

GEOTECHNICAL REPORT

KIANA AIRPORT IMPROVEMENTS PROJECT

AKSAS 63179

STATE OF ALASKA

Department of Transportation and Public Facilities

NORTHERN REGION APRIL 2013

GEOTECHNICAL REPORT KIANA AIRPORT IMPROVEMENTS AKSAS NUMBER: 63179 APRIL 2013

PREPARED BY:

REVIEWED BY:

TIM WEISS W Win

Engineering Geologist II Northern Region STEVE MASTERMAN

Regional Engineering Geologist

Northern Region

APPROVED BY:

Materials Engineer Northern Region

Contents

Summary	4
Introduction	6
Physical Setting	6
Location Climate Geology and Topography	6
Airport Field Investigation and Subsurface Findings	
Proposed Runway Option 1	10 12 16 17
Expected Physical Site Conditions	18
Comments and Recommendations	18
Material Source Investigation	19
Introduction Field Investigation Material Source Reconnaissance Material Source A-1, Northwest of the Airport. Borrow Source A-6, West of the Airport.	20 21 22 26
References:	
APPENDIX A: Test Hole Logs, Runway Option 1	32
APPENDIX A: Test Hole Logs, Runway Option 3	35
APPENDIX B: Laboratory Test Results, Runway Options 1 thru 3	
APPENDIX C: Material Source A-1, Test Hole Logs and Laboratory Test Results	
APPENDIX C: Borrow Source A-6, Test Hole Logs and Laboratory Test Results	
APPENDIX C: Reconnaissance Laboratory Test Results and Asbestos Test Results	
ADDENDIY D. Symbols and Definitions USCS and Key to Frozen Soils	

GEOTECHNICAL REPORT KIANA AIRPORT IMPROVEMENTS STATE PROJECT NUMBER: 63179

Summary

The Alaska Department of Transportation and Public Facilities (ADOT&PF) Northern Region design engineers are evaluating alternatives for expansion or improvements to the Bob Baker Memorial Airport in Kiana, (Figure 1). Potential runway alternatives include:

- (Runway option 1), extending the current runway to the west approximately 800 feet, and adding an aircraft parking apron to the southwest of the existing runway.
- (Runway option 2), moving the entire runway north and parallel to the existing runway, and adding an aircraft parking apron to the northeast of the existing runway.
- (Runway option 3), rotating the west end of the existing runway north and extending approximately 1,000 feet west, and adding similar aircraft parking apron as option 2.

To supply this project and future material source needs to the community, we estimate approximately 700,000 cubic yards of material is needed. To assist with evaluation and planning, Northern Region Materials Section (NRMS) personnel conducted a geotechnical investigation with drilling explorations for the following:

- The three proposed airport runway expansion options.
- Two proposed aircraft parking apron areas.
- Material source (MS) approximately 2.5 miles northwest of the airport; site (MS A-1).
- Potential borrow area to the west of the existing airport runway; site (MS A-6).

Results from this investigation are:

- Runway option 1, extending the existing runway to the west approximately 800 feet is, from a geotechnical perspective, the best expansion option.
- The parking apron to the southwest, as part of runway option 1, is the best geotechnical option.
- Material source (A-1) to the northwest of the airport is estimated to contain gravel and sandy borrow, sufficient to supply material needed for the project.
- The proposed borrow site (A-6), west of the airport is unattractive as a borrow source as frozen silt with excess moisture is dominant.

This report will initially present the results of the airport geotechnical investigation. Each of the three potential runway options will be presented separately in the appropriate section. The material source reconnaissance and investigation will then be discussed, and lastly the test hole logs and laboratory test results are presented at the end of the report.

STATE OF ALASKA
DEPARTMENT OF
TRANSPORTATION AND
PUBLIC FACILITIES
ENGINEERING GEOLOGY
UNIT

KIANA AIRPORT IMPROVEMENTS

DATE: 6/12

PROJECT No. 63179

VICINITY MAP PROTRACTED T18N, R8W KATEEL RIVER MERIDIAN USGS SELAWIK (D3), ALASKA

FIGURE 1

Introduction

This report documents physical site conditions and subsurface geotechnical conditions, provides interpretation of anticipated site conditions, and recommends design and construction criteria for the project. This report is intended to serve as a geotechnical guide during project design and a geotechnical reference during construction.

The purpose of this project and the geotechnical investigation presented here is to improve safety and efficiency at the Kiana Airport. Kiana is often supplied by air freight making the airport essential to the community. The current runway length does not support fully loaded larger aircraft. In addition, the existing runway's deteriorating surface causes operational problems that result in frequent closures during the spring breakup due to soft conditions from poor drainage.

The Bob Baker Memorial Airport (IAN) in Kiana is approximately 3,400 foot long and 100 foot wide gravel runway with 270 foot overruns, located 1 mile north of the village of Kiana at N66°58.56' and W160°26.19' at 166 feet above mean sea level. The runway is oriented 60 degrees northeast and 240 degrees southwest, and is elevated above natural terrain at both ends.

The airport expansion or improvement geotechnical field investigation was conducted from July 19th thru 26th, 2011. A total of 36 test holes (TH) were drilled as part of this investigation;

- Twenty-seven test holes drilled for the three proposed runway options; six holes for runway option 1, 15 for option 2, and six for option 3.
- Nine test holes drilled for two proposed new aircraft parking apron locations. Two holes drilled northeast of the airport, and seven drilled southwest.
- We collected 80 soil samples from the test hole locations.

Field work and access was coordinated with the Alaska Department of Natural Resources, NANA Regional Corporation, and the village of Kiana.

Physical Setting

Location

Kiana is an Inupiat village of approximately 372 people located on a bluff overlooking the confluence of the Kobuk and Squirrel Rivers, about 60 miles east of Kotzebue in northwest Alaska and within the boundaries of the Northwest Arctic Borough. Travelling to the area is by small aircraft throughout the year with scheduled flight service from Kotzebue. The Kobuk River is navigable from the end of May to early October.

Climate

The Environmental Atlas of Alaska, (Hartman, 1984) indicates the village of Kiana is located in the transitional climate zone of Alaska, characterized by pronounced temperature variations throughout the day and year. Long term climate data is not available for the Kiana area. Kotzebue airport at approximately 60 miles west of Kiana and within the same climate zone is used as a comparison. Table 1 below gives climate data for the Kotzebue Airport area. It should be noted that with Kiana 60 miles inland of the Kotzebue airport, temperatures in Kiana are probably lower in the winter and higher in the summer than the Kotzebue area.

Temperature extremes in the Kotzebue area are 85 degrees Fahrenheit during the summer and minus 52 degrees Fahrenheit during the winter. In the summer, sunset in July is approximately at midnight and sunrise is 2:30 am, while winter sunset is 3:00 pm and sunrise is 11:00 am. Wind direction is generally northwest or southeast with average speeds of 10 mph, with the average maximum speed during the summer at 35 mph and 48 mph during the winter, (Hartman, 1984).

Average	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Max. Temp. (F)	3.8	4.2	8.4	21.4	38.0	50.7	59.2	56.5	46.9	28.2	14.0	5.5	28.1
Min. Temp. (F)	-9.5	-10.2	-7.9	4.3	25.1	38.8	48.8	47.1	37.3	19.0	3.4	-7.3	15.7
Total Precip. (in.)	0.49	0.51	0.37	0.44	0.35	0.56	1.48	2.14	1.53	0.80	0.63	0.57	9.87
Total Snowfall (in.)	7.8	7.5	5.8	5.3	1.4	0.1	0.0	0.0	1.0	6.6	9.4	9.3	54.3
Snow Depth (in.)	18	21	24	22	6	0	0	0	0	1	6	12	9

Table 1: Climate Data Summary. Data for Kotzebue WSO Airport, period of Record: 9/1/1949 to 9/30/2012. Data source: Western Regional Climate Center, wrcc@dri.edu.

Figure 2 below is a graphic representation of mean annual temperatures from 1949 to 2009 for the Kotzebue Airport area. The red line is the 5 year average and the solid black line is the trend line.

Figure 2: Kotzebue Airport Mean Annual Temperature (°F) from 1949 to 2009. Data source: The Alaska Climate Research Center, Geophysical Institute at University Alaska Fairbanks, climate.gi.alaska.edu.

The following thawing and freezing indices shown in Table 2 are for Kotzebue Airport. The thawing index, or degree-days above freezing, is a measure of thawing that occurs during the year. The thawing index listed below takes the annual thawing-degree days (TDD) for the last thirty years and averages them. The design thawing index takes the average of the three warmest (highest) TDD over the last thirty years.

Likewise, the freezing index, or degree-days below freezing, can be used to calculate the depth of ground freezing during winter. The freezing index listed below averages the annual freezing-degree-days (FDD) for the past thirty years. The design freezing index "coldest" averages the three coldest (highest) FDD for the same period. The "warmest" design freezing index averages the warmest (lowest) FDD.

No data was available for the project site, so data from Kotzebue is used to calculate the thermal indices. Kiana should be expected to have a higher thawing index and site-specific temperature data should be utilized for any thaw-depth calculations or thermal modeling.

Table 2: Thawing and Freezing Index. Kotzebue Airport, 1976 to 2005.

Thawing Index	2200 Fahrenheit degree-days
Freezing Index	5459 Fahrenheit degree-days
Design Thawing Index	2673 Fahrenheit degree-days
Design Freezing Index	6762 Fahrenheit degree-days
Freezing Index (average of warmest three annual	4435 Fahrenheit degree-days
FDDs in 30 years)	

Geology and Topography

The village of Kiana is located in the Western Alaska physiographic province and within the Kobuk - Selawik lowland division, (Wahrhaftig, 1965). Kiana lies in the northern portion of the Selawik topographic quadrangle and just south of the Baird Mountains quadrangle, both within the Kateel River Meridian. The Kobuk river lowlands consist mainly of sand and gravel broad river flood plains with numerous lakes and swampy terrain. The river is bordered by gravel and sand terraces 100 to 200 feet above the river level, (Wahrhaftig, 1965).

The Baird Mountains to the north of Kiana are the western end of the Southern Brooks Range fold and thrust belt. The Squirrel River drains from the Baird Mountains. The Kiana Hills to the west of Kiana are a group of low rounded hills less than 2,000 feet in elevation. The hills are underlain primarily by schist, schistose quartzite and phyllite rocks, with minor recrystallized limestone or dolomite and altered basaltic volcanic rocks, (Patton, 1968). Some of these rocks crop-out 2 to 3 miles southwest of Kiana along the north bank of the Kobuk River.

Moderately thick to thin discontinuous permafrost underlies areas of fine grained deposits. Isolated masses of permafrost occur in areas of coarse grained deposits near the river systems. Fine grained sand and silt glacial outwash cover areas above river floodplains, and comprise the majority of the material underlying the airport and village areas.

Kiana lies in an area of low seismic activity, (Figure 3), and as a result falls under Seismic Zone 2B according to The Uniform Building Code, 1997 version. The United States Geological Survey Seismic hazard map from 2007 give the area a peak ground acceleration of .10g to .20g, with a 10

percent probability of exceedance in 50 years. The mapped fault shown in red on Figure 3 is the Kobuk Fault and is mapped approximately 65 miles east of Kiana.

Figure 3: Northwestern Alaska Seismicity, Data from 1958 to 2003. Kiana is located in the lower center of the figure. Source: Alaska Earthquake Information Center. www.aeic.alaska.edu

Airport Field Investigation and Subsurface Findings

The airport geotechnical investigation was conducted by NRMS personnel consisting of drillers S. Parker and G. Nelson, and engineering geologist T. Weiss. A Central Mine Equipment (CME) 45B drill mounted on a Bombardier carrier was used to drill the test holes, using 6.5-inch hollow stem and 6- inch solid flight augers. Drilling and test hole conditions were logged in the field using the Unified Soil Classification System (USCS) (Appendix D). Samples were collected from auger cuttings and laboratory analysis was conducted by the Northern Region Materials Laboratory. The testing program included gradations with classification, and moisture and organic content analysis.

All test hole locations were recorded using a hand held Global Positioning System (GPS) Garmin GPS 72 model using the North American Datum (NAD) 83. The GPS has an accuracy of plus or minus 50 feet. After drilling and sample collection, all test holes were backfilled with auger cuttings with some locations containing a small mound of excess material.

Proposed Runway Option 1

Proposed alternatives to expand the existing runway include Option 1. This option involves extending the current runway approximately 800 feet to the west, and building a 500 by 350 foot new aircraft parking apron with access ramp at the southwest corner of the existing runway, (Figure 4).

Figure 4: Proposed Runway Option 1, with Test Hole Locations. Some test holes drilled beyond planned extension in proposed fill slope areas.

We drilled 13 test holes for runway Option 1 and these holes ranged from 15 to 30 feet in depth. Some test holes shown in Figure 4 were located near proposed fill slope areas, assuming deep fills to construct the runway extension and parking apron.

The area west of the existing runway is mostly undisturbed tundra with thin to moderately thick black spruce up to 1 foot in diameter. The area slopes moderately to the west and is approximately 13 to 60 feet below the runway elevation.

An All Terrain Vehicle (ATV) trail exists at the fill slope toe of the western end of the existing runway. This area and 100 feet west, is disturbed ground covered with young thick brush as compared to the tundra area to the west. TH11-165 was located in this disturbed area and TH11-191 located just to the west in tundra. A large area to the northwest of the existing runway is also disturbed ground covered with young grasses and brush. The boundary between disturbed and undisturbed areas are marked by a line of spruce trees, as indicated below in Figure 5.

Figure 5: Disturbed area northwest of the existing runway, looking south toward proposed runway Option 1. The west end of the runway is to the left background.

The area of the proposed new aircraft parking apron southwest of the runway is also mostly undeveloped tundra with a gradual slope to the south and is 10 to 40 feet below the runway elevation. Black spruce trees are also present but less abundant and smaller at up to 6 inches in diameter. TH11-192 was located at the proposed parking apron access ramp and near a drainage ditch running along the edge of the runway. The runway to the north is approximately 10 feet higher in elevation than the ditch and the test hole location. The ditch is choked and obstructed with thick brush.

Runway Extension Subsurface Findings

Test holes located in tundra areas of the proposed runway extension, TH11-173 thru 176 and 191, encountered the following:

- One foot thick organic mat.
- Seasonal thaw from 1 to 5 feet in depth, consisting of silt, sandy silt to silty sand material.
- Two moisture content samples in thawed material indicated 14.5 and 25.8 percent, and organic contents of 1.6 and 2.4 percent.
- Frozen inter-layered silt, sandy silt and silty sand material underlying seasonal thaw and to depths explored at 15 to 27 feet.
- Moisture contents in the frozen material ranged from 25.2 to 38.9 percent.
- Organic contents were slight and ranged from 0.6 to 2.4 percent. Wood chips were observed in auger cuttings in TH11-175 at 10 feet and TH11-191 at 18 feet in depth.

TH11-191 drilled approximately 150 feet west of TH11-165 and 250 feet west of the existing runway, did not encounter fill material. Frozen material was encountered at five feet depth and continued to

the depth explored at 25 feet. A five foot high scarp was observed at the surface 10 feet to the east of TH11-191.

TH11-165 was drilled near the toe of the existing runway fill slope. The test hole encountered thawed fill material to 4.5 feet in depth. Underlying the fill is a thin organic mat, and thawed sandy silt material that was moist to wet to 20.5 feet in depth. Frozen silty sand material was encountered from 20.5 to the depth explored at 25 feet.

Visible Ice was not encountered in these test holes to the depths explored, frozen material encountered was classified as nonvisible bonded with no excess ice (Nbn), to nonvisible bonded with excess ice (Nbe), see Appendix D for a key to frozen ground classification.

Proposed Aircraft Parking Apron Subsurface Findings.

Test holes 11-193 to 198 were drilled at the new proposed aircraft parking apron southwest of the existing runway. These test holes generally encountered:

- 1 to 1.5 feet thick organic mat at the surface.
- Seasonally thawed silt to sandy silt material underlying the organic mat at most locations 1 to 5 feet in depth. TH11-193 encountered frozen material underlying the organic mat.
- Frozen silt, silt with sand, sandy silt or silty sand material was encountered from 1 to 5 feet below the surface and continued to depths explored at 15 to 30 feet.
- TH11-198 encountered 10 to 30 percent ice from 2 to 9 feet in depth, with a buried peat layer at 3.5 to 4.5 feet.
- A pocket of pressurized gas was encountered at TH11-196, at a depth of 9.5 feet. This was easily noted as visible air blowing out of the drilled auger hole.
- Moisture contents in the frozen material ranged from 24.7 to 37.4 percent.
- Organic contents were slight and ranged from 0.7 to 2.7 percent. Wood chips were observed in TH11-197 at 16 feet in depth.

TH11-192 was drilled just south of the active runway and near a deep drainage channel. Seasonally thawed sandy silt was encountered to a depth of 12 feet, with the material being wet and loose at 7 to 12 feet. Underlying the sandy silt material was one foot thick wet silty sand material, overlying frozen sandy silt to a depth of 20 feet. The frozen material was field classified as Nbe or Nbn.

Groundwater was not encountered in any holes.

Test hole logs of all Option 1 test holes including the aircraft parking apron are included in Appendix A at the end of this report. Laboratory test results are included in Appendix B.

Proposed Runway Option 2

Runway Option 2 involves relocating the entire runway north and adjacent to the existing runway, and extending to the west approximately 1,000 feet, (Figure 6). The area just north of the existing runway is thick with brush, grasses, and black spruce to 1 foot in diameter, except the west central portion, where vegetation is less abundant.

Figure 6: Proposed Runway Option 2, with Test Hole Locations.

The Option 2 area is generally slightly higher in elevation than the existing runway, except the western and eastern ends. The eastern end near the Precision Approach Path Indicator's (PAPI) drops dramatically compared to the existing runway by approximately 10 to 15 feet. The area is thick with vegetation and the ground is wet and spongy in some locations. The western end of the option gradually gets lower than the runway, with the steepest gradient at the west end.

An abrupt vegetation difference is present along the northern edge of runway Option 2. Thick young vegetation is present near the existing runway and quickly changes to sparse tundra with stunted black spruce at approximately 250 feet north of the existing runway. The young vegetation area near the runway appears to have been disturbed, with uneven ground, sink holes, fissures, and debris or garbage observed. These features combined with test hole results indicate possible fill material spread throughout most of the Option 2 area. The origin of this fill material is unknown, but probably originated from previous runway construction work. The abrupt vegetation change was located with a hand held GPS, as shown in Figure 7, and one example location shown in Figure 8.

Fourteen test holes were drilled for runway Option 2, shown in Figure 6. These test holes were drilled north, northwest, and parallel to the existing runway from 90 to 250 feet north of the runway centerline. Two additional test holes, TH11-152 and 153 were drilled at a proposed aircraft parking apron approximately 300 feet north and northeast of the existing runway.

Figure 7: GPS Surveyed Abrupt Vegetation Change Boundary.

Subsurface Findings

Drilling at the eastern end and east of the PAPI devices at TH11-150 and 151, indicated a 1 foot thick spongy organic mat at the surface. Underlying the mat was wet, loose and thawed silty sand or sandy silt material from 1 to over 20 feet in depth. TH11-150 did not encounter frozen material to the depth drilled at 23 feet. Drilling met little resistance in the loose thawed material and water filled the test holes to the surface. TH11-151 encountered frozen silty sand material at 23 feet and was classified as Nbe.

As test hole drilling continued from east to west, the permafrost table decreased in depth with the thawed, wet, and loose material decreasing in moisture and increasing in relative density. This observation holds until the western end of the proposed runway option, with the permafrost table depth increasing again. All runway Option 2 test holes west of the PAPI devices indicated possible disturbed fill material from 2.5 to 13.5 feet in depth, except TH11-177 at the western end. The following is a summary of the Option 2 test hole subsurface findings:

- Thin organic mat from the surface to 1 foot in depth.
- Seasonally thawed silt, silt with sand, sandy silt or silty sand material from 1.5 to 20 feet in depth.

Figure 8: Abrupt Vegetation Change Contact. Boundary between young vegetation on the right and tundra vegetation on the left. Photo taken near TH11-160, looking east with the runway in the middle right background.

- Frozen silt, silt with sand, sandy silt or silty sand material was encountered from 1.5 to 20 feet and continued to depths explored at 10 to 25 feet in depth, was classified as Nbe.
- Visible ice was only encountered in TH11-159; from 7 to 19 feet in depth and was classified as visible ice crystals (Vx).
- Moisture contents ranged from 13.1 to 40.7 percent, with typical values ranging from 25 to 35 percent. Water filled most drill holes, most commonly at the eastern and western ends of the proposed runway option.
- Organic contents ranged from 0.7 to 7.8 percent, with typical values ranging from 1 to 3.5 percent. Visible wood chips were encountered in TH11-158 at 3 feet and TH11-172 at 15 feet in depth.

A drill rod and connector lowered down the test hole and driven with a 130 pound cat-head rope hammer was used to simulate blow counts. These blow counts were driven two feet and performed at TH11-157 and 11-158 locations. TH11-157 blow counts indicated 2, 3, 4 and 4 from 5 to 7 feet, and 0, 1, 1 and 1 from 10 to 12 feet. An attempt at blow counts deeper than 10 feet was not possible, as wet and loose flowing sandy material filled the hollow stem auger. TH11-158 encountered frozen material at 7 feet and the rod was driven from 5 to 7 feet in depth and yielded blow counts of 6, 12, 13 and 15 for each six inches driven. These blow counts are only for reference, and are not similar to Standard Penetration Test (SPT) blow counts and should not be related or correlated to n-values.

At the western end of Option 2, a second area has been disturbed, as shown in Figures 5 and 7. This area was explored as part of runway Options 2 and 3, and has young vegetation, settlement holes, and fissures at the surface in the area. Thawed material consisting of silt, silt with sand, sandy silt and

silty sand was encountered to depths of 13.5 feet. A scarp approximately 6 feet in height and 900 feet west of the existing runway was observed which immediately dropped and transitioned to tundra terrain. A previous geotechnical investigation performed in 1989 indicated this area was a borrow area at one time and has since been filled-in. See previous geotechnical investigation section in this report on page 18 for more detail.

Option 2 drilling was also performed to the north of the existing runway at TH11-152 and 153, this area was defined as a potential aircraft parking apron. These holes were drilled in tundra areas, and drilling indicated permafrost sandy silt material underlying the organic mat at 1 to 2 feet in depth and continuing to depths explored at 20 feet. Massive ice was encountered at TH11-152 from 5 to 14 feet in depth, while 20 to 50 percent ice was encountered in TH11-153 from near the surface to the depth explored at 17.5 feet and classified as Vx.

Test hole logs of all runway Option 2 test holes including the proposed aircraft parking apron to the northeast are included in Appendix A at the end of this report. Laboratory test results are shown in Appendix B.

Proposed Runway Option 3

Runway Option 3 is similar to Option 2, except the west end is rotated to the north and the east end is at the existing runway location. Because of this similarity, test holes for this option were drilled only at the west end of the option, as shown in Figure 9 below. A portion of runway Option 3, as opposed to Option 2, extends to the north and into undisturbed tundra areas. The western end also lies within the disturbed area mentioned above in Option 2 drilling, and shown in Figures 7 and 9.

Subsurface Findings

TH11-160, 161 and 163 are located in tundra areas, these test holes encountered:

- 1 foot thick organic mat.
- Frozen silt, silt with sand, and sandy silt material to depths explored at 15 to 20 feet.
- TH11-163 encountered a peat layer from 2 to 3.5 feet with visible ice. Wood chips were observed in auger cuttings in TH11-160 at 18 feet and TH11-163 at 11 feet in depth.
- Visible ice up to approximately 25 percent was encountered in all three test holes and at various depths. The ice was classified as Vx or visible ice stratified (Vs). All other frozen material was classified as Nbe.
- Moisture contents in frozen material ranged from 27.1 to 296.8 percent.
- Organic contents ranged from 1.4 to 54.0 percent.

TH11-166, 167, 168 and 170 were drilled in the disturbed area northwest of the exiting runway, and at the western end of runway Option 3, these holes generally encountered:

- Organic mat from the surface to 1 foot in depth.
- Thawed sandy silt, silty sand, or sand with silt material underlying the organic mat from 4 to 15 feet in depth.
- Permafrost sandy silt or silty sand material was encountered from 4 to 14 feet and continued to depths explored at 15 to 28.5 feet.
- Minor visible ice was encountered in TH11-167 from 6.5 to 9 feet and classified as Vx. All other frozen material was classified as Nbe or Nbn.
- Wood chips were observed in auger cutting at TH11-166 and 168, both at 12.5 feet in depth.

- Moisture contents ranged from 15.8 to 44.1 percent.
- Organic contents were slight and ranged from 0.6 to 4.7 percent.

Figure 9: Proposed Runway Option 3, with Test Hole Locations

Test hole logs of all runway Option 3 test holes are included in Appendix A at the end of this report. Laboratory test results are included in Appendix B.

Previous Geotechnical Investigation

A geotechnical investigation was accomplished in 1989 for proposed improvements to the airport that include lengthening and widening the main runway, construction of a new taxiway, and aircraft parking apron with a connecting access road. The investigation explored a potential borrow area approximately 500 feet west of the existing runway at that time. This area was noted in the investigation report, "The site has been cut into the side of a hill sloping down from the west end of the runway. An existing work area 300 feet long by 300 feet wide has been excavated 1 to 5 feet deep", (Ondra, 1990). The area now appears to be larger, (Figures 6 and 9), and deeper as indicated in runway Option 2 and 3 test hole logs.

The previous investigation and report also noted an existing berm north of the runway, approximately 10 feet in height above the runway and extending the length of it. The report also recommends placing waste material north of the existing runway.

Expected Physical Site Conditions

Based on variability common in natural environments, climate of the project area and conditions observed in this investigation, anticipate the following physical conditions:

- Expect frozen ground, either seasonally or perennially frozen within the project area at any time of the year.
- Expect perched groundwater on top of frozen layers.
- Expect pumping of silt soils at the bottom of excavations.
- Expect to encounter areas of massive ice in foundation soils, ice-rich soil will be wet and unstable upon thawing.
- Expect thaw bulbs in the vicinity of culverts.
- Expect difficulty handling moist or wet thawed silty soils.

Comments and Recommendations

The existing gravel runway appears to be in relatively good working condition, with some thaw subsidence cracking observed parallel to the embankment and near the edges. Some minor perpendicular cracking was observed and could be related to airport lighting crossings.

These geotechnical comments and recommendations are based on the results of this investigation. Recommendations are given only for Option 1, to include the proposed aircraft parking apron to the southwest of the airport. Comments are only given for proposed runway Options 2 and 3.

Option 1, west runway extension and new aircraft parking apron to the southwest

- From a geotechnical standpoint this is the best of the three runway options. Disturbed fill material was encountered only at the west end of the existing runway, as part of the original runway construction. Frozen silt or sand material with minimal ice was encountered throughout more than half of the proposed extension.
- Remove fill material west of the runway and discard, do not reuse.
- Place woven reinforcement geotextile fabric in areas after fill removal, lapping onto undisturbed ground 50 feet and run seams parallel to the runway centerline.
- Wherever possible preserve the surface organic mat. Place a separation geotextile where the organic mat has been compromised. High-strength separation geotextile may be necessary to allow equipment to place fill on wet terrain depending on the season.
- Hand clear or mechanically clear when ground is frozen. This is especially important in areas with massive ice if encountered.
- Bench to place embankment on steep slopes. Benching should be continuous across the fill area.
- Benching is also needed to key the placement of new embankment into the existing embankment. Overlap new embankment material over existing gradually without an abrupt transition.
- Do not use frost susceptible fine grained fill material within 8 feet of proposed finished grade.

- If frost susceptible fine grained fill is used, place separation geotextile fabric at 8 feet below finished grade and complete the embankment with non-frost susceptible (NFS) material. NFS material is specified as less than 6 percent by weight passing the #200 sieve.
- Organic silts and/or material coming from cuts or sub-excavations into ice-rich soils should not be used for embankment construction.
- Design structural embankment side slopes at 1.5H:1V or flatter when using NFS, and for frost susceptible material, design structural embankment side slopes at 2H:1V or flatter.
- Protect foreslopes from erosion by revegetating.
- Drainage around the existing airport is poor and improvements are needed.
- Design for positive drainage of the embankment and ditches throughout the project, including the existing embankment and ditches.
- Line ditches with gradients greater than 2 percent and in fine grained soils with one foot of ditch lining or acceptable alternative.

Option 2, moving the entire runway to the north of the existing runway

- This option is the least desirable of the three runway options. The entire option is situated along a noticeable disturbed area containing old fill material. The old fill material may not have been compacted, as determined by observed settlement holes and fissures at the surface.
- Underlying the old fill material is up to 20 feet of thawed silt or sand material that was observed to be very loose, wet and flowing sands at some locations. This is more evident at the eastern end of the proposed option.
- This option may require deep sub-excavations or a means to consolidate thawed, wet and lose soils below the fill material.
- Massive ice was encountered in one test hole in the tundra area at the proposed parking apron to the northeast of the airport.

Option 3, rotating the west end of the runway to the north, with the east end as a pivot at the existing runway

• This option is possible, but may require deep sub-excavations of old fill material and saturated thawed material. The eastern and western ends of this option alignment are the most problematic.

Material Source Investigation

Introduction

The materials source information included in this section is for the purpose of assisting in the project design process. It does not signify that the sources are available or suitable for use during the construction of any current or future project. This Geotechnical Report does not determine source availability or suitability for any construction project; it only provides information that can be used to make that determination during the project design process. Sources available or suitable for use for a construction project will be specified in the appropriate section of the Plans and Specifications of the Contract Documents for the construction project.

To support the airport expansion or improvements project, NRMS personnel conducted a material source reconnaissance of 6 sites and drill investigation at proposed material source (MS A-1) northwest of the airport, and potential material source (MS A-6) to the west of the existing runway, (Figures 1 and 10).

Results from this investigation are:

- Material site (A-1) to the northwest of the airport is estimated to contain gravel and sandy borrow material sufficient to supply the material needed for the project.
- The proposed site (A-6), west of the airport is unattractive as a borrow source as frozen silt with excess moisture is dominant.
- No other sites were explored as part of this investigation, with the exception of the reconnaissance survey samples obtained at four other possible material sites mentioned in this report.

The field reconnaissance survey, drilling exploration work, and all access were coordinated with appropriate members of the Alaska Department of Natural Resources, the NANA Regional Corporation, and the village of Kiana.

Field Investigation

The material source reconnaissance occurred from July 5th thru 8th, 2011. Field personnel were: State of Alaska Department of Transportation Northern Materials Section (NRMS) J. Currey, Materials Engineer, S. Masterman, Regional Engineering Geologist, T. Weiss, Engineering Geologist, and S. Parker, Driller. A. Depew, Geologist with the Department of Natural Resources was also a member of the reconnaissance survey. Six sites were visited and surface soil samples were collected from five of the six locations, (Figure 10).

Based on the reconnaissance survey, drilling explorations were then conducted at material site (A-1) and proposed borrow site (A-6) between November 11th thru 21st, 2011. This work was performed by drillers S. Parker and G. Nelson, and engineering geologist T. Weiss. A Central Mine Equipment (CME) 45B drill mounted on a Bombardier carrier was used to drill a total of 38 test holes at the two sites, using 6 inch solid flight augers.

Drilling and test hole conditions were logged in the field using the Unified Soil Classification System (USCS). We recorded test hole locations with a hand held Garmin 72 Global Positioning System (GPS) using the North American Datum (NAD) 83. The GPS has an accuracy of plus or minus 50 feet. Test holes were backfilled with drilled auger cuttings once drilling was complete.

From the two material sites, 98 soil samples were collected from drill auger cuttings. Laboratory testing of the samples was conducted by the Northern Region Materials Laboratory. The testing program included gradations with classification, L.A. abrasion, degradation, sodium sulfate loss, plasticity index, and moisture and organic content analysis. All tests were performed according to the standard test methods shown in Table 3. The results of the testing program are included in Appendix C after the test hole logs for each material site.

Test Method	AASHTO	ASTM		
Index Test	's			
Gradation	T27	C136		
Minus #200 Gradation	T11	C117		
Liquid Limit	T89	D4318		
Plastic Limit	T90	D4318		
Moisture Content – Aggregate	T255	C566		
Soil	T265	D2216		
Organic Content (Burn)	T267			
Proctor (Moisture Density Relationship)	T180	D1557		
USCS Classification	D2487	D2487		
Fine Specific Gravity	T100	D854		
Coarse Specific Gravity	T85	D127		
Quality Tes	ets			
Degradation	T13			
Los Angeles Abrasion	T96	C131		
Sodium Sulfate Soundness	T104	C88		

Table 3: Laboratory Standard Test Methods.

Material Source Reconnaissance

Prior to performing the drilling investigation, NRMS personnel conducted a material source reconnaissance. Six potential material sources (MS A-1 thru A-6) were visited, (Figure 10). The purpose was to identify one or more material sources close to the airport to supply the estimated 700,000 cubic yards of material needed for the airport improvements project. Prior information was gathered and the six sites shown were determined to be the best for possible gravel, borrow, and proximity to the project. A summary of the field reconnaissance survey is given below:

- Sites A-1, A-2, A-3 and A-4 were all estimated to have a gravel resource. Collected samples indicted poor- or well-graded gravel with sand, with L.A. Abrasion values from 35 to 41 and degradation factors from 39 to 68.
- Site A-1 was considered the best possible gravel resource due to its close location to the airport, and would be the first priority for exploration. If drilling explorations did not show adequate gravel quantities additional sites would be explored.
- Sites A-3 and A-2 were considered the second and third priority sites, respectively.
- Sites A-5 and A-6 were estimated to not have sufficient gravel quantities, but could supply borrow material. Collected samples from three locations at A-5 indicated poorly-graded sand with gravel, silty sand, and silty sand with gravel material, meeting standard specifications for Selected Material Type C.
- Sites A-5 and A-4 were eliminated as a possible material source due to the interest in these locations by the City of Kiana.
- Site A-6 would be explored for borrow material only.

Laboratory test results in Appendix C contain detailed sample results from the reconnaissance survey.

Due to the presence of naturally occurring asbestos (NOA) at sites upstream on the Kobuk River, samples from the five reconnaissance sites as well as from the airport borrow area (Site A-6) were analyzed for NOA by EMSL Analytical of San Leandro California. None of the samples contained detectable NOA material at the 0.1% level of sensitivity analyzed. Laboratory results are presented in Appendix C at the end of this report.

Figure 10: Reconnaissance Material Source (MS) Locations.

Material Source A-1, Northwest of the Airport

Location and Access

Potential Material Site A-1 is undeveloped and located approximately 2.5 miles northwest of Kiana and the airport. The site is located within the Kateel River Meridian Baird Mountains topographic quadrangle sheet A-4, Section 31 of Township 19 North, Range 8 West, and at N67° 0.032' and W160° 30.106'. All-season access does not exist to the site, and for this investigation access was accomplished by snow machine along the route shown in Figure 1.

Description

The site is on alluvial fan material from the Kiana Hills to the west. The site is between a bedrock ridge to the west and a small stream to the east. The site drains from west to east and is gradually to steeply sloped, vegetation is light to heavy with 6-inch or larger diameter trees present. At the time of our investigation, snow was approximately 2 to 3 feet deep.

Land Status

The site is located on NANA Regional Corporation land.

Explorations and Sampling

Unconsolidated high terrace gravels were observed on steep slopes at the site during the reconnaissance survey. Reconnaissance laboratory test results indicated well-graded gravel with 4.9 percent passing the #200 sieve, L.A abrasion of 37, and degradation factor of 39. An independent contractor also collected a surface sample in the area. Their laboratory testing indicated quality

values of 56 for degradation and 36 for L.A. abrasion loss, and 5 percent passing the #200 sieve and 45 percent passing the #4 sieve.

We drilled twenty test holes (TH11-455 to TH11-474) at Site A-1 to depths ranging from 30 to 50 feet, (Figure 16 in Appendix C). Test holes were located on a grid of 300 to 600 feet across the site. A summary of Material Site A-1 drilling is given below in Table 4. The summary includes some laboratory test results from samples collected from auger cuttings.

Detailed logs and laboratory test results are included in Appendix C. A symbol and definition sheet, the Unified Soil Classification System (USCS), and key to frozen soils classifications are shown in Appendix D.

Quality of Materials

A summary of material site A-1 explorations are given below in Table 4. Test hole locations can be found in Appendix C, Figure 16.

Table 4: Summary of Material Site A-1 Test Hole Results. Shaded rows indicate gravel result locations.

Test Hole Number	Depth Drilled	Silt Overburden	Sand Zone/ Shaded Gravel	Comments
	(Feet)	(Feet)	Zone (feet)	
TH11-455	40	18	18-35	PI 3 from 20 to 23.5 feet Bedrock at 35 feet
TH11-456	40	21	21-29 and 32.5-	Silt 29 to 32.5 feet
TH11-457	40	8.5-23	8.5-15 and 23-	Organic 5.4 percent at 5 feet Bedrock at 34.5 feet
TH11-458	50	2.5	2.5-15 and 16.5-	LA 32 from 10 to 15 feet Silt 15 to 16.5 feet
TH11-459	40	5	5-40	
TH11-460	40	2.5	2.5-40	Gravel
TH11-461	30	2.5	2.5-21	PI 4 from 12.5 to 17 feet Bedrock at 21 feet
TH11-462	38	5	5-38	Wet at 30 feet and thawed from 25 to 35 feet
TH11-462		_	_	LA 32 and Deg. 77 from 15 to 20 feet; thawed from 25 to 35 feet
TH11-463	40	3	3-40	PI 2 from 4 to 8 feet
TH11-464	40	4	4-37	PI 4 at 14 feet Bedrock at 37 feet
TH11-465	30	14	5.5-8 and 14-22 and 23-27.5	Silt Interlayering

Table 4: Summary of Material Site A-1 Test Hole Results. (Continued)

Test Hole Number	Depth Drilled (Feet)	Silt Overburden (Feet)	Sand Zone/ Shaded Gravel Zone (feet)	Comments
TH11-466	35	4.5	4.5-31.5	PI 4 from 20 to 24 feet Silt 31.5 to 35 feet
TH11-467	30	10	10-20.5	Silt 20.5 to 30 feet
TH11-468	50	3	3-44	PI 4 from 19 to 23 feet Silt 44 to 50
TH11-469	40	2.5	2.5-40	
TH11-470	35	5.5	5.5-28	Deg. 34 from 11.5 to 15 feet Silt 28 to 35 feet
TH11-471	40	3.5	3.5-20	PI 7 from 24 to 29 feet Silt 20 to 40 feet
TH11-472	30	7.5	7.5-30	Organic 4.6 percent at 10 feet PI 3 from 25 to 30 feet
TH11-473	40	0.5	0.5-36.5	Gravel, Deg 61 and 58 from 15 to 23 feet
TH11-474	30	3.5	3.5-30	Gravel

(PI) is Plasticity Index, (LA) is L.A. abrasion, (Deg.) is Degradation

From Table 4, field observations, and laboratory test results the following comments can be made for the quality of subsurface materials at Material Site A-1:

- Organic contents ranged from 0.4 to 9.2 percent.
- Material was mostly non-plastic with some samples indicating a plastic index (PI) from 2 to 4 and liquid limit (LL) from 18 to 35. Testing of a sample at TH11-471, from 24 to 29 feet in depth indicated a PI of 7 and LL of 33.
- Bedrock was encountered at depth in four test holes. The rock was highly weathered, showed low drill resistance, was sandy in nature, and field classified as a mica-rich metamorphic rock.
- In general, frozen sandy material was encountered from 5 to 25 feet in depth and throughout the middle of the site. This area extends from the stream at its lowest eastern extent to approximately 500 feet upslope to the west.
- Frozen gravel material was mostly encountered to the north and south of the sandy material and generally at the same depth.
- In general, silty material was encountered to the west at approximately 500 feet upslope from the creek bed level.
- The contact between silty material and gravel or sand material could be sharp. This is indicated by TH11-473 and TH11-456. TH11-473 encountered clean gravel material from 10 to 30 feet in depth, while TH11-456 encountered mostly silt with some sand and gravel throughout the depth of the test hole. The distance between the two test holes is approximately 300 feet. Figure 16 indicates a heavily vegetated area near TH11-473 compared to the area around TH11-456.

• To the south of the site, an area with large spruce trees near TH11-460, suggests the gravel encountered at that test hole may extend further south.

Frozen Ground Conditions

Test holes were drilled in November, 2011, and generally the permafrost table was encountered at 2 to 7 feet and continued to depths explored. Seasonal frosted soils near the surface may have been present at the time drilling was performed, but was not easily recognizable. Frozen material was typically classified as nonvisible, bonded with no excess ice (Nbn) to nonvisible bonded with excess ice (Nbe). Only one test hole, TH11-457, encountered an estimated 25 percent visible ice (Vx); from 14 to 20 feet in depth. Moisture contents in frozen material classified as Nbn or Nbe ranged from 4.9 to 33 percent.

Clearing and Stripping

Generally the surface organic mat throughout the site is approximately one foot thick. Vegetation is thick to moderately thick, with most being spruce trees up to 2 feet in diameter. Larger trees mostly exist to the south.

Silt overburden ranged from 0.5 to 23 feet in depth, with 3 to 5 feet typical. Test holes drilled uphill (western edge) of the site at TH11-456, 472, 457, and 465 generally encountered the deepest overburden, with TH11-455 and 467 being the exception.

Groundwater

Groundwater was encountered in only TH11-462, at approximately 30 feet in depth, and corresponds to approximately the level of the creek at the bottom of the hill. Disturbances to frozen ground could release water from ice-rich soils and perched water tables.

Results, Comments and Conclusions

- Drilling and laboratory test results indicate the site has the potential to supply the material needed for the project. Mining plans will need to maximize available materials.
- Sand and gravel material depth is approximately 4 to 29 feet thick, becoming silty with increased moisture at depth. Cobbles with some boulders may be present throughout the site and at any depth.
- Bedrock may be encountered; rock encountered may range from very soft to hard over short intervals, with varying fracture orientations.
- Sand and gravel material appears to be open to the north and south.
- The material is limited to the west, becoming progressively silt-rich upslope.
- Laboratory test results indicate not all the gravel meets standard specifications for all crushed aggregate products.
- Auger drilling in frozen soils, and the resulting cuttings and samples may indicate higher fines content than samples collected by other means.
- Laboratory test results indicate the sandy material meets standard specifications for Selected Material, Type C, with some areas having the potential to meet Selected Material, Type B standard specifications.
- High fines content of samples suggests screening will be required to meet requirements for most products.
- Material quality and gradation are variable over the site due to interlayered coarser and finer material.

- The frozen material may need drying prior to compaction, as we anticipate natural moisture is above optimum moisture in some areas of the site.
- Expect frozen ground conditions throughout the site and anytime of the year.
- A water table is often not observable when drilling frozen ground because of low permeability. In excavations below water table elevation, expect accumulation of ground water from infiltration and thawing of contained ice as well as accumulation from precipitation and surface runoff.
- Expect pumping of silt soils at the bottom of excavations.

Borrow Source A-6, West of the Airport

Location and Access

Potential material Site A-6 is undeveloped and is located approximately 1,100 feet west of the airport. The site is located within the Kateel River Meridian Selawik topographic quadrangle sheet D-3, Section 8 of Township 18 North, Range 8 West, and at N66° 58.502' and W160° 27.608'. Access is not provided to the site, but a small all terrain vehicle trail connects the site to the western end of the airport.

Description

Fine grained sand and silt glacial outwash derived material underlies tundra throughout the majority of the site. Most of the site is low rolling hills, with swampy ground in intervening low areas and a few small ponds present. Vegetation is light to heavy, with spruce trees to 6 inches in diameter. The larger and thicker vegetation is concentrated near drainages.

Land Status

The site is partially located on NANA Regional Corporation land and partially on state airport property.

Explorations and Sampling

We drilled eighteen test holes west of the existing runway (TH11-178 to TH11-190 and TH11-450 to TH11-454). Test holes were drilled to depths ranging from 20 to 30 feet and from 700 to 3,000 feet west of the airport, and approximately 900 feet south of the projected airport centerline to 1,850 feet north, (Figure 19 in Appendix C).

The site was initially explored in July, 2011 and results indicated mostly silt material with some sand and no gravel. The exception to this was a hill to the north at TH11-178 and TH11-179, where laboratory tests indicated silty sand material was present. This area was determined to have the greatest potential for sandy borrow material, and five additional test holes (TH11-450 to 454) were drilled in this area during the November 2011 drilling.

Quality of Materials

Results from the drilling and laboratory test results are summarized as followed:

- Thawed and wet silt or sandy silt material was encountered ranging from 2 to 8.5 feet in depth.
- Three samples at TH11-181, 186 and 190 indicated silt with sand material, and the percent passing #200 sieve at 83 to 85 percent.
- Six samples at TH11-178, 179, 451, 452, and 453 indicated silty sand material. This material was encountered beginning at 8, 12, 10, 4.5, and 11 feet respectively. The percent material

passing the #200 sieve ranged between 24.5 and 49.5 percent, with four of six samples over 40 percent passing.

• Organic contents ranged from 0.4 to 4.3 percent.

Frozen Ground Conditions

Visible ice was encountered in TH11-452, 454, 181, 182, 183, 184, 187, 188 and 189. Massive ice was encountered at TH11-454, 181, 184, 187 and 188. All other frozen material was classified as Nbn or Nbe, with Nbe typical. Seasonal frosted soils near the surface may have been present during the November drilling, but was not easily recognizable. Moisture contents in frozen material ranged from 10 to 45 percent, with typical values from 30 to 40 percent.

Clearing and Stripping

Generally the surface organic mat throughout the site is approximately six to 16 inches thick. Vegetation is moderately thick to thin, with spruce trees up to 6 inches in diameter.

Groundwater

Groundwater was not encountered in any test holes to depths explored.

Results, Comments and Conclusions

- Most material was classified as sandy silt. A hill to the north of the site contained silty sand in five of the seven test holes from 4 to 12 feet below the surface.
- Considering the depth of the sandy material and limited extent, the site may be considered marginal for borrow extraction.
- Additionally, natural moisture contents indicate excess moisture throughout the site.
- The site is considered unattractive for a project borrow site. It could potentially supply frost susceptible borrow material that is located close to the project and the airport, that meets standard specification for Selected Material, Type C. However, we expect natural moisture contents to be above optimum moisture, and that thawing, draining and drying will be necessary prior to compacting this material.
- Auger drilling in frozen soils, and the resulting cuttings and samples may indicate higher fines content than samples collected by other means.
- Expect frozen ground conditions throughout the site and anytime of the year.
- Expect pumping of silt soils at the bottom of excavations

References:

Patton, H.H., Miller, T.P., 1968, 1:250,000 Regional Geologic Map of Selawik and Southeast Baird Mountains, U. S. Geologic Survey.

Wahrhaftig, C. 1965, Physiographic Divisions of Alaska: U.S. Geological Survey Professional Paper 482.

Hartman, C.W., Johnson, P.R., 1984, Environmental Atlas of Alaska, University of Alaska Fairbanks, Alaska.

Ondra, P. 1990, Geotechnical Report Kiana Airport Reconstruction, Northern Region, Project No. AIP 03-02-0146-01/64762, State of Alaska Department of Transportation and Public Facilities.

APPENDIX A

TEST HOLE LOGS: Runway Option 1

RUNWAY OPTION 1 TEST HOLE LOCATIONS

200 0 100 200

> TH11-193 STA 33+20, 450'R 24 JUL 2011 0.0- 1.5

Bn-Bk ORG MAT moist, hi Org Bn-Gy So SILT Nbn 3.5-Nbe SAMPLE 11-2298 (6.0-6.5)Gy Si SAND Nbe Gy Sa SILT Nbe SAMPLE 11-2299 (11.0-11.5)NM 32.3%, ORG 1.3% TH11-194 STA 30+10, 470'R 24 JUL 2011

0.0- 1.0 Bn-Bk ORG MAT moist, hi Org Bn Sa SILT moist 4.0-Bn-Gy Nbe SAMPLE 11-2300 (4.0-4.5)NM 30.3%, ORG 0.9% SAMPLE 11-2301 (5.0-7.0)ML, 59.4% -200 NV. NP SAMPLE 11-2302 (10.5 - 11.0)NM 32.6%, ORG 1.7% 11.0- Consistent

11.0-Consistent SAMPLE 11-2263 (15.0 - 15.5)NM 38.9%, ORG 2.4% 20.0-25.0 Gy Si SAND Nbn 23.0-Consistent TH11-195 STA 28+30, 700'R 25 JUL 2011 Bn-Bk ORG MAT moist, hi 1777 0.0- 1.0 Bn-Gy SILT w/ Sa moist, 1.0- 9.0 sl Org 3.0-Nbe SAMPLE 11-2303 (4.5 - 5.0)NM 37.4%, ORG 2.7% SAMPLE 11-2304

TH11-173 STA 23+25, 10'L

0.0- 1.0 Bn-Bk ORG MAT moist,

(4.0-4.5)

Gy Sa SILT Nbe

(8.0 - 8.5)

Bn-Bk SILT Org, Nbn

Gy SILT w/ Sa Nbe

SAMPLE 11-2254

SAMPLE 11-2255

11.0-Wood chips Gy So SILT Nbe

SAMPLE 11-2256 (15.0 - 17.0)

ML,60.6% -200

SAMPLE 11-2257

Bn-Bk ORG MAT moist,

SAMPLE 11-2262

ML, 67.8% -200

Gy Sa SILT sl Org, Nbe

Bn Si SAND moist, sl Org

hi Org

3.0- Nbn

NV, NP

(5.0 - 8.0)

(23.0 - 23.5)

NM 30.8%, ORG 1.7%

NM 37.9%, ORG 1.7%

NV, NP 23.0-Consistent

NM 25.2%, ORG 1.0%

hi Org

1.0- 3.0

3.0- 7.0

7.0-12.0

12.0-27.0

23 JUL 2011

12.0

27.0

TH11-176

20.0

STA 20+80, 10'R

0.0 - 1.0

5.5-20.0

23 JUL 2011

(5.5 - 8.0)ML. 77.8% -200 NV, NP 9.0-11.0 Gy Si SAND sl Org, Nbn 11.0-15.0 Gy Sa SILT Nbe SAMPLE 11-2305 (13.0 - 13.5)NM 35.9%, ORG 1.5%

TH11-174 STA 24+80, 150'R 23 JUL 2011 Bn-Bk ORG MAT moist 0.0- 1.0 to wet, hi Org Gy Sa SILT moist to wet 3.5- wet 4.5-Nbe 9.0 SAMPLE 11-22.58 (5.0 - 5.5)NM 25.8%, ORG 1.4% Gy-Bn Si SAND Nbe 6.0- 9.0 9.0-13.0 Gy Sa SILT Nbe SAMPLE 11-2259 (11.0-11.5)NM 34.2%, ORG 1.3% 13.0-15.0 Gy Si SAND Nbn

STA 25+60, 5'R 24 JUL 2011 0.0- 1.0 Bn-Bk ORG MAT moist, hi Org Gy-Bn Sa SILT moist, sl Org 4.0- 38.1 degrees F Bn Si SAND sl Org, Nbe 5.0- 7.0 SAMPLE 11-2293 (5.0 - 5.5)NM 28.9%, ORG 2.4% Gy Sa SILT Nbe 7.0-22.0 22.0 SAMPLE 11-2294 25.0 (7.5 - 8.0)NM 29.6%, ORG 0.6% SAMPLE 11-2295 (8.5-11.0)ML, 58% -200 NV, NP 13.5-Thin sandy zones SAMPLE 11-2296 (15.0 - 15.5)NM 32.5%, ORG 1.2% 16.5- Consistent

18.0-Wood chips 22.0-25.0 Gy Si SAND sl Org, Nbn

TH11-191

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES ENGINEERING GEOLOGY UNIT

DATA:	KIANA AIRPORT IMPROVEMENTS RUNWAY OPTION 1		
DRAWN: CP			
APPROVED: TW	PROJECT NO. 63179		
DATE: JUNE 2012	PAGE 30		

TH11-192 STA 32+30, 140'R

0.0- 1.0 Bn-Bk ORG MAT moist, hi Org 1.0-12.0 Bn-Gy Sa SILT (fill?) moist, sl Org 5.5-moist to wet 7.5-wet SAMPLE 11-2297 (8.5 - 9.0)NM 28.5%, ORG 1.8% Gy Si SAND wet 13.5-20.0 Gy Sa SILT sl Org, Nbe

15.5-Nbn 16.0-Limited

cuttings, water in hole

7.0-10.0

NM 31.9%, ORG 1.0%

TH11-175 STA 21+70, 170'R

0.0- 1.0

1.0- 7.0

7.0- 9.0

9.0-12.5

12.5-14.5

23 JUL 2011

TH11-165 STA 27+50, 5'R

0.0- 0.5

2.5- 4.5

4.5- 5.0

5.0-20.5

Bn-Bk ORG MAT

Bn-Gy So SILT (fill)

Bk ORG MAT moist, hi

Bn-Gy Sa SILT moist

SAMPLE 11-2237

SAMPLE 11-2238

ML, 68.3% -200

NV, NP 13.5-moist to wet 14.5-sl Org

SAMPLE 11-2239

Bn-Bk ORG MAT moist,

Gv-Bn Si SAND moist

SAMPLE 11-2260

NM 14.5%, ORG 1.6%

hi Org

(3.0 - 3.5)

4.0- Nbe

Gy Sa SILT Nbe

Gy Si SAND Nbe

Gy Sa SILT Nbe

(13.0 - 13.5)

Consistent

10.0-Wood chips

SAMPLE 11-2261

NM 25.6%, ORG 1.0%

Gy Si SAND Nbn 16.5-

NM 26.8%, ORG 2.0%

NM 20.8%, ORG 1.7%

moist, hi Org

moist, sl Org

moist, sl Org

(8.5 - 9.0)

(12.0 - 15.0)

(18.0 - 18.5)

20.5-25.0 Gy Si SAND sl Org, Nbe

Bn Si SAND (fill)

22 JUL 2011

2.5

- FIGURE 11 -

- FIGURE 12 -

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES ENGINEERING GEOLOGY UNIT

E. 10 12E, 11.1	0 0202007 07177
DATA:	KIANA AIRPORT IMPROVEMENTS
DRAWN: CP	OPTION 1 SITE
APPROVED: TW	PROJECT NO. 63179
DATE: JUNE 2012	PAGE 31

APPENDIX A

TEST HOLE LOGS: Runway Option 2

ENGINEERING GEOLOGY UNIT

ENOMEZIN	0 0202007 0777			
DATA:	KIANA AIRPORT IMPROVEMENTS			
DRAWN: CP	RUNWAY OPTION 2			
APPROVED: TW	PROJECT NO. 63179			
DATE: JUNE 2012	PAGE 34			

APPENDIX A

TEST HOLE LOGS: Runway Option 3

15.0

RUNWAY OPTION 3 TEST HOLE LOCATIONS

0 100 200

TH11-167 STA 24+80, 420'L 22 JUL 2011 0.0- 1.0 Bn-Bk ORG MAT moist, hi Org Gy-Bn Sa SILT (fill) 1.0 - 4.0moist, sl Org 2.5-moist to wet SAMPLE 11-2243 (3.0 - 3.5)NM 35.6%, ORG 4.7% 4.0-15.0 Gy Sa SILT sl Org, Nbe, 31.7 derees F 6.5-Vx, 10 Percent Ice SAMPLE 11-2244 (8.0 - 8.5)NM 44.1%, ORG 3.4% 9.0- Nbe

TH11-168 STA 21+60, 350'L 22 JUL 2011 0.0 - 0.5Bn-Bk ORG MAT moist, hi Org Bn PG SAND w/ Si (fill) moist, sl Org 11.0 SAMPLE 11-2245 14.0 (5.0 - 9.0)SP-SM, 7.8% -200 NV. NP 7.0- Easy drilling and consistent 11.0-14.0 Gy Si SAND moist to wet, sl Org 12.5-Wood chips 14,0-17.5 Gy Si SAND Nbn Gy Sa SILT Nbn 17.5-20.0 SAMPLE 11-2246 (18.5 - 19.0)NM 25.0%, ORG 1.5%

STA 23+50, 300'L 23 JUL 2011 0.0- 0.5 Bn-Bk ORG MAT moist, 3.5 hi Org 0.5- 3.5 Bn Si SAND (fill) moist, 8.0 sl Org 3.5- 8.0 Bn-Gy Sa SILT (fill) 13.5 moist, sl Org 16.5 8.0-13.5 Gy-Bn Si SAND (fill) moist, sl Org 11.0-moist 20.0 to wet, Easy Drilling 13.0- Organics Gy Si SAND wet, sl Org 15.0- Nbe SAMPLE 11-2247 (15.5 - 16.0)NM 21.4%, ORG 1.3% 16.5-20.0 Gy Sa SILT Nbn Gy Si SAND Nbn 20.0-25.5 SAMPLE 11-2248 (23.0 - 23.5)NM 20.8%, ORG 0.6% 25.5-28.5 Gy Sa SILT Nbn

TH11-161 STA 37+10, 230'L STA 40+00, 170'L 22 JUL 2011 22 JUL 2011 Bn-Bk ORG MAT moist, 0.0- 1.0 Bn-Bk ORG MAT 0.0 - 1.0moist, hi Org 1.0- 2.0 Bn SILT Org, Nbe 1.0-13.0 Gy SILT w/ So sl Org, Nbe 3.0-Vx, 2.0-12.5 Gy SILT w/ Sa Org, Vx 10 Percent Ice SAMPLE 11-2226 13.0 SAMPLE 11-2224 (4.0 - 4.5)(5.0 - 10.0)NM 81.1%, ORG 5.1% 17.0 ML.83.4% -200 SAMPLE 11-2227 20.0 NV, NP 6.5-5 to 10 (10.0 - 10.5)Percent Ice NM 38.3%, ORG 2.6% 13.0-17.0 Gy-Bn Sa SILT Nbe 10.5-sl Org, Vs SAMPLE 11-2225 12.5-15.0 Gy Sa SILT sl Org, Vs (13.0 - 13.5)NM 27.1%, ORG 1.4% 17.0-20.0 Gy SILT w/ Sa sl Org, Vx 18.0- Wood chips TH11-163 TH11-166 STA 31+60, 260'L STA 26+00, 290'L 22 JUL 2011 22 JUL 2011 0.0 - 1.0Bn-Bk ORG MAT 0.0- 1.0 Bn-Bk ORG MAT moist, 55 moist, hi Org 1.0 - 3.05.5 Bn-Bk SILT Org, Nbe 1.0- 2.0 Bn PEAT moist, hi Org Bn PEAT hi Org, Vx 3.0- 4.5 2.0- 5.5 Bn-Gy Si SAND (fill) 9.5 SAMPLE 11-2232 moist, sl Org (4.0-4.5)SAMPLE 11-2240 15.5 NM 296.8%, ORG 54.0% (5.0-5.5)4.4 - 6.0Gy SILT w/ Sa NM 15.8%, ORG 2.4% 20.0 hi Org, Vx 5.5- 7.0 Bn Sa SILT (fill) moist to 6.0-15.0 Gy Sa SILT sl Org, Nbe wet, sl Org SAMPLE 11-2233 7.0- 9.5 Bn Si SAND (fill?) (8.0 - 8.5)wet, sl Org NM 49.3%, ORG 3.7% SAMPLE 11-2241 11.0- Wood chips (9.0 - 9.5)14.5- sl Org, Nbe NM 24.0%, ORG 3.2% SAMPLE 11-2234 9.5-11.5 Gy Sa SILT sl Org, Nbe (14.5 - 15.0)Gy Si SAND Nbe 12.5-11.5-15.5 NM 34.2%, ORG 2.1% Wood chips SAMPLE 11-2242 (13.0 - 13.5)NM 26.1%, ORG 1.1% 15.5-20.0 Gy So SILT Nbe

- FIGURE 15 -

STATE OF ALASKA

DEPARTMENT OF TRANSPORTATION
AND PUBLIC FACILITIES

ENGINEERING GEOLOGY UNIT

APPENDIX B

LABORATORY TEST RESULTS: Runway Options 1 Thru 3

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE: C

CENTERLINE, RUNWAY OPTION 1

						to the second se	
TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-165 8.5-9.0 27+50 5R 11-2237 22-Jul-11	TH11-165 12.0-15.0 27+50 5R 11-2238 22-Jul-11	TH11-165 18.0-18.5 27+50 5R 11-2239 22-Jul-11	TH11-173 4.0-4.5 23+25 10L 11-2254 23-Jul-11	TH11-173 8.0-8.5 23+25 10L 11-2255 23-Jul-11	TH11-173 15.0-17.0 23+25 10L 11-2256 23-Jul-11	TH11-173 23.0-23.5 23+25 10L 11-2257 23-Jul-11
% Passing 3" 2" 1.5" 1.0" 0.75" 0.5" 0.375" #4							
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100		99.1 98.5 96.4 94.7				99.3 97.7 95.7	
Silt/Clay #200		68.3				60.6	
0.02 0.005 0.002 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION		NV NP ML				NV NP ML	
USCS SOIL DESCRIPTION	SaSi	SaSi	(SaSi)	(Si w/Sa)	(SaSi)	SaSi	SaSi
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) SODIUM SULF. (FINE) NORDIC ABRASION	20.8		26.8 2.0	30.8 1.7	37.9 1.7		25.2 1.0
REMARKS							

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

¹ Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE:

CENTERLINE, RUNWAY OPTION 1

TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-174 5.0-5.5 24+80 150R 11-22.58 23-Jul-11	TH11-174 11.0-11.5 24+80 150R 11-2259 23-Jul-11	TH11-175 3.0-3.5 21+70 170R 11-2260 23-Jul-11	TH11-175 13.0-13.5 21+70 170R 11-2261 23-Jul-11	TH11-176 5.0-8.0 20+80 10R 11-2262 23-Jul-11	TH11-176 15.0-15.5 20+80 10R 11-2263 23-Jul-11	TH11-191 5.0-5.5 25+60 5R 11-2293 24-Jul-11
% Passing 3" 2" 1.5" 1.0" 0.75" 0.5" 0.375" #4							
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100					99.1 98.3 95.9 94.4		
Silt/Clay #200					67.8		
0.02 0.005 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION					NV NP ML		
USCS SOIL DESCRIPTION	(SaSi)	(SaSi)	(SiSa)	(SaSi)	SaSi	SaSi	(SiSa)
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) NORDIC ABRASION	25.8 1.4	34.2 1.3	14.5 1.6	25.6 1.0		38.9 2.4	28.9 2.4
REMARKS						sl Org ¹	sl Org ¹
05115011 00111150				U	14.3 1.55	L	

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

¹ Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE:

CENTERLINE, RUNWAY OPTION 1

						,	,
TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-191 7.5-8.0 25+60 5R 11-2294 24-Jul-11	TH11-191 8.5-11.0 25+60 5R 11-2295 24-Jul-11	TH11-191 15.0-15.5 25+60 5R 11-2296 24-Jul-11	TH11-192 8.5-9.0 32+30 140R 11-2297 24-Jul-11	TH11-193 6.0-6.5 33+20 450R 11-2298 24-Jul-11	TH11-193 11.0-11.5 33+20 450R 11-2299 24-Jul-11	TH11-194 4.0-4.5 30+10 470R 11-2300 24-Jul-11
% Passing 3" 2" 1.5" 1.0" 0.75" 0.5" 0.375" #4							
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100		99.4 98.8 96.1 93.8					
Silt/Clay #200 0.02		58.0					
Hydro 0.005 0.002 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION		NV NP ML					
USCS SOIL DESCRIPTION	SaSi	SaSi	SaSi	(SaSi)	(SaSi)	(SaSi)	SaSi
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) SODIUM SULF. (FINE) NORDIC ABRASION	29.6 0.6		32.5 1.2	28.5 1.8	31.9 1.0	32.3 1.3	30.3 0.9
REMARKS							
		L	L	L	I	J	1

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE:

CENTERLINE, RUNWAY OPTION 1

							·	
TEST HOLE DEPTH (feet STATION OFFSET LAB NUMBE DATE SAMF	t) ER	TH11-194 5.0-7.0 30+10 470R 11-2301 24-Jul-11	TH11-194 10.5-11.0 30+10 470R 11-2302 24-Jul-11	TH11-195 4.5-5.0 28+30 700R 11-2303 25-Jul-11	TH11-195 5.5-8.0 28+30 700R 11-2304 25-Jul-11	TH11-195 13.0-13.5 28+30 700R 11-2305 25-Jul-11	TH11-196 4.5-5.0 29+80 760R 11-2306 25-Jul-11	TH11-196 8.5-9.0 29+80 760R 11-2307 25-Jul-11
% Passing Gravel	3" 2" 1.5" 1.0" 0.75" 0.5" 0.375" #4							
Sand	#8 #10 #16 #20 #40 #50 #60 #80 #100	99.2 96.9 95.0			99.4 99.1 98.3 97.3			
Silt/Clay	#200	59.4			77.8			
Hydro	0.02 0.005 0.002 0.001							
LIQUID LIMI PLASTIC INI USCS CLAS		NV NP ML			NV NP ML			
USCS SOIL	DESCRIPTION	SaSi	(SaSi)	Si w/Sa	Si w/Sa	(SaSi)	(SaSi)	(SaSi)
NATURAL M ORGANICS SP. GR. (FIN SP. GR. (CO MAX. DRY E OPTIMUM M L.A. ABRASI DEGRAD. FA SODIUM SU SODIUM SU NORDIC ABI	NE) DARSE) DENSITY MOISTURE MON ACTOR PLF. (CRSE) PLF. (FINE)		32.6 1.7	37.4 2.7		35.9 1.5	37.4 2.0	37.2 2.2
REMARKS				sl Org ¹				sl Org ¹
			L	L	L	<u> </u>	L	L

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

¹ Organic content determination is based on the results of the ATM T-6 test method.

PROJECT NAME:

Kiana Airport Improvements

 $PROJECT\ NUMBER:$

AKSAS NUMBER:

63179 T. Weiss

SAMPLED BY: MATERIAL SOURCE:

CENTERLINE, RUNWAY OPTION 1

	,		·	T		1	
TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-196 12.0-12.5 29+80 760R 11-2308 25-Jul-11	TH11-197 8.0-8.5 31+50 670R 11-2309 25-Jul-11	TH11-197 11.5-14.0 31+50 670R 11-2310 25-Jul-11	TH11-197 17.5-18.0 31+50 670R 11-2311 25-Jul-11	TH11-197 23.0-23.5 31+50 670R 11-2312 25-Jul-11	TH11-198 4.0-4.5 32+90 780R 11-2313 25-Jul-11	TH11-198 8.0-8.5 32+90 780R 11-2314 25-Jul-11
% Passing 3" 2" 1.5" 1.0" 0.75" 0.5" 0.375" #4							
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100			99.3 98.6 95.5 93.3				
Silt/Clay #200			59.2				
0.02 0.005 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION			NV NP ML				
USCS SOIL DESCRIPTION	(SaSi)	(SiSa)	SaSi	(SiSa)	(SaSi)	(Si)	(SaSi)
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) SODIUM SULF. (FINE) NORDIC ABRASION	34.7 1.5	33.1 1.5		30.9 1.0	33.1 1.6	125.2 20.0	24.7 0.7
REMARKS						hi Org ¹	

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

¹ Organic content determination is based on the results of the ATM T-6 test method.

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE: CENTERLINE, RUNWAY OPTION 1

TEST HOLE DEPTH (feet) STATION OFFSET		TH11-198 9.5-11.5 32+90 780R	TH11-198 16.0-16.5 32+90 780R				
LAB NUMBE DATE SAMP		11-2315 25-Jul-11	11-2316 25-Jul-11				
% Passing Gravel	3" 2" 1.5" 1.0" 0.75" 0.5" 0.375"						
Sand	#8 #10 #16 #20 #40 #50 #60 #80 #100	98.7 97.6 93.7 89.4					
Silt/Clay	#200	39.3					
Hydro	0.02 0.005 0.002 0.001						
LIQUID LIMIT PLASTIC IND USCS CLASS	EX	NV NP SM					
USCS SOIL E	ESCRIPTION	SiSa	(SiSa)				
NATURAL MO ORGANICS SP. GR. (FINI SP. GR. (COA MAX. DRY DE OPTIMUM MO L.A. ABRASIO DEGRAD. FA SODIUM SUL SODIUM SUL NORDIC ABR	E) ARSE) ENSITY DISTURE DN CTOR F. (CRSE) F. (FINE)		28.0 1.6				
REMARKS							
GENERAL CO	NMMENTS	Gradation is base	d on material passir	the 3" sieve, accor	rding to Alaska Test	Method T-7.	

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

¹ Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE:

CENTERLINE, RUNWAY OPTION 2

							· · · · · · · · · · · · · · · · · · ·
TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-151 7.0-7.5 63+40 140L 11-2210 21-Jul-11	TH11-152 17.5-18.0 62+70 320L 11-2211 21-Jul-11	TH11-153 9.0-9.5 59+10 340L 11-2212 21-Jul-11	TH11-153 12.0-15.0 59+10 340L 11-2213 21-Jul-11	TH11-156 4.0-4.5 55+20 150L 11-2214 21-Jul-11	TH11-156 5.0-9.0 55+20 150L 11-2215 21-Jul-11	TH11-157 3.0-3.5 58+10 110L 11-2216 22-Jul-11
% Passing 3" 2" 1.5" 1.0" 0.75" 0.5" 0.375" #4							
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100				99.4 98.4 97.5 94.7 92.4		99.2 98.1 97.0 92.9 89.9	
Silt/Clay #200				78.7		61.4	
0.02 0.005 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION				NV NP ML		NV NP ML	
USCS SOIL DESCRIPTION	(SaSi)	(SiSa)	(SaSi)	Si w/Sa	SaSi	SaSi	(SaSi)
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) SODIUM SULF. (FINE) NORDIC ABRASION	31.6 1.5	24.9 0.7	61.3 9.2		21.5 2.1		27.6 1.8
REMARKS			Org ¹		sl Org ¹		
				L			

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

¹ Organic content determination is based on the results of the ATM T-6 test method.

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: 63179 SAMPLED BY: T. Weiss

MATERIAL SOURCE: CENTERLINE, RUNWAY OPTION 2

TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-157 11.0-11.5 58+10 110L 11-2217 22-Jul-11	TH11-158 6.5-7.0 49+90 100L 11-2218 22-Jul-11	TH11-158 9.0-9.5 49+90 100L 11-2219 22-Jul-11	TH11-159 5.0-5.5 44+20 90L 11-2220 22-Jul-11	TH11-159 8.5-9.0 44+20 90L 11-2221 22-Jul-11	TH11-159 14.0-14.5 44+20 90L 11-2222 22-Jul-11	TH11-159 19.5-20.0 44+20 90L 11-2223 22-Jul-11
% Passing 3" 2" 1.5" 1.0" 0.75" 0.5" 0.375" #4							
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100							
Silt/Clay #200							
0.02 0.005 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION							
USCS SOIL DESCRIPTION	(SiSa)	(SaSi)	(SaSi)	(Si w/Sa)	(SaSi)	(SaSi)	(SaSi)
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) SODIUM SULF. (FINE) NORDIC ABRASION	19.3 0.7	37.6 2.3	33.0 1.6	40.7 3.3	36.7 2.6	31.4 1.2	33.3 1.7
REMARKS		sl Org ¹	-	sl Org ¹	sl Org ¹		
CENEDAL COMMENTS	0.1/2.1.1	1	. 41 2# -:	rding to Alacka Tast	Mathad T 7		

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

 $\label{eq:WG} \text{USCS Soil Description Abbreviations: } WG = Well-graded; \ PG = Poorly-graded; \ E = Elastic; \ L = Lean; \ F = Fat$

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE: CENTERLINE, RUNWAY OPTION 2

TEST HOLE DEPTH (feet STATION OFFSET LAB NUMBE DATE SAMF	t) ER	TH11-162 2.5-3.0 34+80 140L 11-2228 22-Jul-11	TH11-162 7.5-8.0 34+80 140L 11-2229 22-Jul-11	TH11-162 13.0-13.5 34+80 140L 11-2230 22-Jul-11	TH11-162 17.0-17.5 34+80 140L 11-2231 22-Jul-11	TH11-164 5.0-10.0 29+50 100L 11-2235 22-Jul-11	TH11-164 13.0-13.5 29+50 100L 11-2236 22-Jul-11	TH11-171 2.0-5.0 22+50 170L 11-2249 23-Jul-11
% Passing Gravel	3" 2" 1.5" 1.0" 0.75" 0.5" #4							
Sand	#8 #10 #16 #20 #40 #50 #60 #80 #100				-	99.1 97.4 95.8 90.4 85.7		99.0 96.5 94.6
Silt/Clay						51.9		69.6
Hydro	0.02 0.005 0.002 0.001							
LIQUID LIMIT PLASTIC INE USCS CLASS	DEX					NV NP ML		NV NP ML
USCS SOIL I	DESCRIPTION	(SaSi)	(SaSi)	(SaSi)	(SiSa)	SaSi	(SaSi)	SaSi
NATURAL M ORGANICS SP. GR. (FIN SP. GR. (CO. MAX. DRY D OPTIMUM M L.A. ABRASI DEGRAD. FA SODIUM SUI SODIUM SUI NORDIC ABI	IE) ARSE) ENSITY OISTURE ON ACTOR LF. (CRSE) LF. (FINE)	22.3 3.5	22.3 1.9	35.3 2.6	22.5 0.7		26.9 3.3	
REMARKS		sl Org¹		sl Org¹			sl Org ¹	

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

¹ Organic content determination is based on the results of the ATM T-6 test method.

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE: CENTERLINE, RUNWAY OPTION 2

				·		
TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-171 8.0-8.5 22+50 170L 11-2250 23-Jul-11	TH11-171 13.0-13.5 22+50 170L 11-2251 23-Jul-11	TH11-177 6.5-7.0 18+60 250L 11-2264 23-Jul-11	TH11-177 10.0-10.5 18+60 250L 11-2265 23-Jul-11		
% Passing 3"						
2" 1.5" 1.0" 0.75" 0.5" 0.375" #4						
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100						
Silt/Clay #200						
0.02						
Hydro 0.005 0.002 0.001						
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION						
USCS SOIL DESCRIPTION	SaSi	(SiSa)	(SiSa)	(SiSa)	and the second s	
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) SODIUM SULF. (FINE) NORDIC ABRASION	13.1 0.7	20.8 0.9	31.4 1.0	29.2 1.0		
REMARKS						

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

¹ Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE:

CENTERLINE, RUNWAY OPTION 3

					,		
TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-160 5.0-10.0 40+00 170L 11-2224 22-Jul-11	TH11-160 13.0-13.5 40+00 170L 11-2225 22-Jul-11	TH11-161 4.0-4.5 37+10 230L 11-2226 22-Jul-11	TH11-161 10.0-10.5 37+10 230L 11-2227 22-Jul-11	TH11-163 4.0-4.5 31+60 260L 11-2232 22-Jul-11	TH11-163 8.0-8.5 31+60 260L 11-2233 22-Jul-11	TH11-163 14.5-15.0 31+60 260L 11-2234 22-Jul-11
% Passing 3" 2" 1.5" 1.0" 0.75" 0.5" 0.375" #4							
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100	99.3 98.8 97.3 96.4						
Silt/Clay #200	83.4						
0.02 0.005 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION	NV NP ML						
USCS SOIL DESCRIPTION	Si w/Sa	(SaSi)	(Si w/Sa)	(Si w/Sa)	(Si w/Sa)	(SaSi)	(SaSi)
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) SODIUM SULF. (FINE) NORDIC ABRASION		27.1 1.4	81.1 5.1	38.3 2.6	296.8 54.0	49.3 3.7	34.2 2.1
REMARKS			Org ¹	sl Org ¹	hi Org ¹	sl Org ¹	sl Org ¹
			l		L		L

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

¹ Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: 63179 SAMPLED BY: T. Weiss

MATERIAL SOURCE: CENTERLINE, RUNWAY OPTION 3

TEST HOLE DEPTH (feet STATION OFFSET LAB NUMBE DATE SAMF	:) ER	TH11-166 5.0-5.5 26+00 290L 11-2240 22-Jul-11	TH11-166 9.0-9.5 26+00 290L 11-2241 22-Jul-11	TH11-166 13.0-13.5 26+00 290L 11-2242 22-Jul-11	TH11-167 3.0-3.5 24+80 420L 11-2243 22-Jul-11	TH11-167 8.0-8.5 24+80 420L 11-2244 22-Jul-11	TH11-168 5.0-9.0 21+60 350L 11-2245 22-Jul-11	TH11-168 18.5-19.0 21+60 350L 11-2246 22-Jul-11
% Passing Gravel	3" 2" 1.5" 1.0" 0.75" 0.5" 0.375" #4							
Sand	#8 #10 #16 #20 #40 #50 #60 #80 #100						98.1 93.6 88.8 71.6 56.1	
Silt/Clay	#200	***************************************					7.8	
Cinciay	0.02							
Hydro	0.005 0.002 0.001							
LIQUID LIMIT PLASTIC IND USCS CLASS	DEX						NV NP SP-SM	
USCS SOIL I	DESCRIPTION	(SiSa)	(SaSi)	(SiSa)	(SaSi)	(SaSi)	PGSa w/Si	(SaSi)
NATURAL MOORGANICS SP. GR. (FIN SP. GR. (CO) MAX. DRY D. OPTIMUM MODELA. ABRASIO DEGRAD. FA SODIUM SUL NORDIC ABF	E) ARSE) ENSITY OISTURE ON ACTOR LF. (CRSE) LF. (FINE)	15.8 2.4	24.0 3.2	26.1 1.1	35.6 4.7	44.1 3.4		25.0 1.5
REMARKS		sl Org ¹	sl Org ¹		sl Org ¹	sl Org¹		

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

¹ Organic content determination is based on the results of the ATM T-6 test method.

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: 63179 SAMPLED BY: T. Weiss

MATERIAL SOURCE: CENTERLINE, RUNWAY OPTION 3

			·			,	
TEST HOLE NUMBE DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-170 15.5-16.0 23+50 300L 11-2247 23-Jul-11	TH11-170 23.0-23.5 23+50 300L 11-2248 23-Jul-11					
% Passing 3"							
2" 1.5" 1.0" 0.75" 0.5" 0.375"							
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100							
Silt/Clay #200							
0.02		 	-				
Hydro 0.02 0.005 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICAT	ION						
USCS SOIL DESCRI	PTION (SiSa)	(SiSa)					
NATURAL MOISTUR ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTUR L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRS SODIUM SULF. (FINI NORDIC ABRASION	1.3 PE SE)	20.8					
REMARKS							
CENEDAL COMMEN	TS Gradation is here	ed on material passing	n the 3" sieve ness	ding to Alaska Test	t Method T-7		

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

¹ Organic content determination is based on the results of the ATM T-6 test method.

APPENDIX C

MATERIAL SOURCE: SITE A-1
TEST HOLE LOGS AND LABORATORY TEST RESULTS:

MATERIAL SITE A-1 200 0 100 200

NV, NP 37.5- Low resistance,

sandy cuttings

Gy Si SAND w/ Gr Nbn

45.0- Gravel zones

SAMPLE 11-2524 (40.8 - 41.2)

NM 9.4% NV, NP

39.5-50.0

- FIGURE 16 -

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES ENGINEERING GEOLOGY UNIT

Vert

STATE OF ALASKA

DEPARTMENT OF TRANSPORTATION
AND PUBLIC FACILITIES

ENGINEERING GEOLOGY UNIT

DATA:	KIANA AIRPORT IMPROVEMENTS				
DRAWN: CP	MATERIAL SITE (A-1)				
APPROVED; TW	PROJECT NO. 63179				
DATE: JUNE 2012	PAGE 53				

SM, 46.4% -200 LL 23, Pl 3 25.5-sand and gravel

- FIGURE 18 -

STATE OF ALASKA

DEPARTMENT OF TRANSPORTATION
AND PUBLIC FACILITIES

ENGINEERING GEOLOGY UNIT

DATA:	KIANA AIRPOR	T IMPROVEMENTS
DRAWN: CP	MATERIAL	SITE (A-1)
APPROVED: TW	PROJECT NO.	63179
DATE: JUNE 2012	PA	GE 54

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER: AKSAS NUMBER:

63179 T. Weiss

SAMPLED BY: MATERIAL SOURCE:

MATERIAL SITE (A-1)

TEST HOLE	NUMBER	TH11-455	TH11-455	TH11-455	TH11-455	TH11-456	TH11-456	TH11-457
DEPTH (feet	t)	11.8-12.2	20.0-23.5	27.3-27.7	37.0-40.0	5.8-6.2	29.8-30.2	4.8-5.2
LATITDUE		N67.00249°	N67.00249°	N67.00249°	N67.00249°	N67.00504°	N67.00504°	N67.00028°
LONGITUDE	₹	W160.50168°	W160.50168°	W160.50168°	W160.50168°	W160.50593°	W160.50593°	W160.50627
LAB NUMBE	ER .	11-2511	11-2512	11-2513	11-2514	11-2515	11-2516	11-2517
DATE SAME	PLED	13-Nov-11	13-Nov-11	13-Nov-11	13-Nov-11	13-Nov-11	13-Nov-11	13-Nov-11
% Passing	3"							
	2"							
	1.5"					ĺ		
	1.0"		100		99			
Gravel	0.75"		99		98			
	0.5"		95		94			
	0.375"		92		91			
	#4		75		79			
73000 A ST 1000 A ST	#8		64.6		63.1		***************************************	
	#10		63.3		60.5			
	#16		57.4		48.8			
	#20							
Sand	#40		49.9		37.9			
	#50		47.6		35.6			
	#60		46.5		34.4			
	#80		44.2		31.7			
	#100		43.0		30.4			
Silt/Clay	#200		35.5		23.1			
1979,000 (1000) (1000)	0.02							
Lludes	0.005							
Hydro	0.002							
	0.001		Ì					
LIQUID LIMIT	F		22	20	NV	NV		NV
PLASTIC INC			3	NP	NP	NP		NP
USCS CLASS			SM	, , ,	SM	137		131
3000 01/100	5 10/1/10/V		Civi		Civi			
USCS SOIL I	DESCRIPTION	(SaSi	SiSa	SiSa	(Bx-	(Si w/Sa)	(Si w/Sa)	(SaSi)
		w/Gr)	w/Gr	w/Gr	soft)	w/Sa)	w/Sa)	
NATURAL M	OISTURF	24.1	PARALAMA	10.9			23.8	
ORGANICS		47.1		10.5		1.3	20.0	5.4
SP. GR. (FIN	E)					1.5		5.4
SP. GR. (CO)	,							
MAX. DRY DI	/							
OPTIMUM M			***************************************	The state of the s				
L.A. ABRASIO	i					ļ		
DEGRAD. FA		ļ						
SODIUM SUL								
SODIUM SUL	' '							
NORDIC ABR	` '			İ		ļ		
REMARKS							. "	Org ¹
NEWARNS								Org
			ļ			l	-	
	ĺ							
						I		

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

¹ Organic content determination is based on the results of the ATM T-6 test method.

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: 63179 SAMPLED BY: T. Weiss

MATERIAL SOURCE: MATERIAL SITE (A-1)

		i		T		T		1
TEST HOLE	NUMBER	TH11-457	TH11-457	TH11-458	TH11-458	TH11-458	TH11-458	TH11-458
DEPTH (fee	t)	16.3-16.7	23.0-27.0	4.8-5.2	10.0-15.0	19.3-19.7	25.0-30.0	31.8-32.2
LATITDUE		N67.00028°	N67.00028°	N67.00064°	N67.00064°	N67.00064°	N67.00064°	N67.00064°
LONGITUDI	=	W160.50627°	W160.50627°	W160.50267°	W160.50267°	W160.50267°	W160.50267°	W160.50267°
LAB NUMBI	ER	11-2518	11-2519	11-2520	11-2521	11-2522	11-2522B	11-2523
DATE SAME	PLED	13-Nov-11	13-Nov-11	15-Nov-11	15-Nov-11	15-Nov-11	15-Nov-11	15-Nov-11
% Passing	3"							
-	2"							
	1.5"							
Gravel	1.0"				99		100	
Graver	0.75"				98		99	
	0.5"				92		97	
	0.375"				86		93	
	#4				69		81	
	#8				53.2		70.0	
	#10				50.8		68.5	
	#16				40.2		60.4	
	#20							
Sand	#40		95.0		30.0		47.4	
	#50		88.0		27.9		41.5	
	#60		81.8		27.0		38.4	
	#80		62.5		25.3		32.0	
	#100		53.2		24.2		29.3	
Silt/Clay	#200		20.1		19.4		18.7	
	0.02							
Hydro	0.005							
"iya"	0.002							
	0.001							
LIQUID LIMI	T		NV		NV		NV	
PLASTIC INL	DEX		NP		NP		NP	
USCS CLAS	SIFICATION		SM		SM		SM	
USCS SOIL	DESCRIPTION	(SaSi w/Gr)	SiSa	(PGSa	SiSa w/Gr	(SiSa w/Gr)	SiSa	(PGSa
		w/Gr)		w/Si&Gr)	w/Gi	w/Gr)	w/Gr	w/Gr)
NATURAL M	OISTURE	112.2		19.9		22.8		
ORGANICS				2.0				0.4
SP. GR. (FIN	IE)							
SP. GR. (CO	ARSE)							
MAX. DRY D								
OPTIMUM M			ļ					
L.A. ABRASI					32			
DEGRAD. FA	1			***************************************				
SODIUM SU	, , ,				3	-		
SODIUM SU	, ,				3			
NORDIC ABI	RASION							
REMARKS								
1.12				ļ				
				allanger				
						j		

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

¹ Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER: AKSAS NUMBER:

63179 T. Weiss

SAMPLED BY: MATERIAL SOURCE:

MATERIAL SITE (A-1)

TEST HOLE NUMBER DEPTH (feet) LATITDUE LONGITUDE LAB NUMBER	TH11-458 40.8-41.2 N67.00064° W160.50267° 11-2524	TH11-459 6.8-7.2 N66.99863° W160.50263° 11-2525	TH11-459 10.8-11.2 N66.99863° W160.50263° 11-2526	TH11-459 12.0-15.0 N66.99863° W160.50263° 11-2527	TH11-459 24.8-25.2 N66.99863° W160.50263° 11-2528	TH11-459 35.0-40.0 N66.99863° W160.50263° 11-2529	TH11-460 6.8-7.2 N66.99655° W160.50393° 11-2530
DATE SAMPLED	15-Nov-11	15-Nov-11	15-Nov-11	15-Nov-11	15-Nov-11	15-Nov-11	16-Nov-11
% Passing 3" 2" 1.5" Gravel 0.75" 0.5" 0.375" #4				99 99 99 99		100 99 96 92 79	
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100				92.2 91.1 82.8 66.3 60.2 56.7 47.2 42.3		66.0 64.2 53.2 47.2 44.4 43.0 40.0 38.6	
Silt/Clay #200				21.2		31.2	
0.02 0.005 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION	NV NP			NV NP SM		NV NP SM	
USCS SOIL DESCRIPTIO	N (SiSa w/Gr)	(PGSa w/Si&Gr)	(PGSa w/Si&Gr)	SiSa	(PGSa w/Si&Gr)	SiSa w/Gr	(PGSa w/Si&Gr)
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) SODIUM SULF. (FINE) NORDIC ABRASION	9.4	1.7	20.7		10.2		4.9 0.5
REMARKS					e de la companya de l		

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

¹ Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: 63179 SAMPLED BY: T. Weiss

MATERIAL SOURCE:

MATERIAL SITE (A-1)

TEST HOLE	NUMBER	TH11-460	TH11-461	TH11-461	TH11-461	TH11-461	TH11-462	TH11-462
DEPTH (feet		8.0-13.0	3.8-4.2	11.8-12.2	12.5-17.0	21.0-25.0	6.3-6.7	12.3-12.7
LATITDUE	,	N66.99655°	N66.99751°	N66.99751°	N66.99751°	N66.99751°	N66.99708°	N66.99708°
LONGITUDE	=	W160.50393°	ľ	W160.50608°	W160.50608°	W160.50608°		W160.50197°
LAB NUMBE		11-2531	11-2532	11-2533	11-2534	11-2535	11-2536	11-2537
DATE SAME		16-Nov-11	16-Nov-11	16-Nov-11	16-Nov-11	16-Nov-11	17-Nov-11	17-Nov-11
% Passing	3"	10110111	10 140 11	10110111	10110111	10110111	17 1407 11	17 1407 11
70 F assiring	2"	95						
	1.5"	88						
	1.0"	72			99	99		
Gravel	0.75"	59			98	97		
	0.5"	43			93	90		
	0.375"	36			89	82		
	#4	24			76	62		
	#8	18.8			64.3	47.0		
i i	#10	18.3			62.4	45.2		
	#16	16.5			55.3	38.3		
	#20							
Sand	#40	14.9			48.7	31.0		
	#50	14.1			46.8	29.3		
	#60	13.7			45.8	28.5		
	#80	12.6			43.8	26.9		
	#100	11.9			42.5	25.8		
Silt/Clay	#200	8.7			36.1	20.0		
•	0.02							
I to a to a	0.005							
Hydro	0.002							
	0.001							
LIQUID LIMIT	F :	NV	NV	21	21	20	NV	NV
PLASTIC INC	1	NP	NP	4	4	NP	NP	NP
USCS CLASS		GP-GM	141	7	SC-SM	SM	141	141
1 0000 OLAGO	JII IOATIOIV	01 -0101			30-3W	Olvi		
USCS SOIL I	DESCRIPTION	PGGr	(SiSa)	SiCISa	SiCISa	(Bx-	(SiSa	(PGSa
0000 0012 2	JEGGIUI IIGIV	w/Si&Sa		w/Gr	w/Gr	soft)	w/Gr)	w/Si&Gr)
NATURAL M	OISTURE			8.2			15.9	
ORGANICS			4.9	0.2			10.0	0.6
SP. GR. (FIN	E)		4.0					0.0
SP. GR. (CO)								
MAX. DRY DI	, 1							
OPTIMUM M	1						Ì	
L.A. ABRASIO	NC NC			İ				
DEGRAD. FA	CTOR							
SODIUM SUL	.F. (CRSE)							
SODIUM SUL							ļ	
NORDIC ABF				and the state of t				
55445:10			1					
REMARKS			sl Org ¹					
						and the state of t		

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

¹ Organic content determination is based on the results of the ATM T-6 test method.

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: 63179 SAMPLED BY: T. Weiss

MATERIAL SOURCE: MATERIAL SITE (A-1)

				Y	1			
TEST HOLE		TH11-462	TH11-463	TH11-463	TH11-463	TH11-464	TH11-464	TH11-464
DEPTH (feet	t)	15.0-20.0	4.0-8.0	12.8-13.2	25.0-30.0	13.8-14.2	17.8-18.2	20.0-23.0
LATITDUE		N66.99708°	N66.99784°	N66.99784°	N66.99784°	N66.99835°	N66.99835°	N66.99835°
LONGITUDE	=	W160.50197°	W160.50332°	W160.50332°	W160.50332°	W160.50574°	W160.50574°	W160.50574°
LAB NUMBE	ER	11-2538	11-2539	11-2540	11-2541	11-2542	11-2543	11-2544
DATE SAMP	PLED	17-Nov-11	17-Nov-11	17-Nov-11	17-Nov-11	18-Nov-11	18-Nov-11	18-Nov-11
% Passing	3"							
	2"							
	1.5"							
Gravel	1.0"	98	100					100
Graver	0.75"	96	98		100			98
	0.5"	87	92		98			92
	0.375"	81	86		97			87
	#4	66	66		88			69
	#8	56.0	50.9		78.9			56.9
	#10	54.4	48.4		77.6			55.6
	#16	46.8	38.3		71.1			50.7
	#20		:		_			
Sand	#40	35.1	28.4		62.3			44.3
	#50	31.3	26.4		59.2			42.0
	#60	29.6	25.5		57.7			40.9
	#80	26.3	23.8		54.4			38.7
	#100	24.9	22.7		52.9			37.2
Silt/Clay	#200	18.2	17.6		44.6			30.9
	0.02							
Hydro	0.005							
1,,,,,,,	0.002							
	0.001							
LIQUID LIMIT	Γ	NV	18		NV	19		18
PLASTIC IND	DEX	NP	2		NP	4		NP
USCS CLASS	SIFICATION	SM	SM		SM			SM
USCS SOIL I	DESCRIPTION	SiSa	SiSa	SiSa	SiSa	(SiSa	(SiSa	SiSa
		w/Gr	w/Gr	w/Gr	w/Gr	w/Gr)	w/Gr)	w/Gr
NATURAL M	OISTURE			8.1		14.6	11.8	
ORGANICS								
SP. GR. (FIN	'E)							
SP. GR. (CO.	ARSE)		İ					
MAX. DRY D	ENSITY							
ОРТІМИМ М	OISTURE							
L.A. ABRASI	ON	32				ĺ		
DEGRAD. FA	ACTOR	77	-					
SODIUM SUL	LF. (CRSE)	. ,	четования					
SODIUM SUL	LF. (FINE)							
NORDIC ABF	RASION							
REMARKS								
1								

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

¹ Organic content determination is based on the results of the ATM T-6 test method.

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: 63179 SAMPLED BY: T. Weiss

MATERIAL SOURCE: MATERIAL SITE (A-1)

TEST HOLE DEPTH (feet LATITDUE LONGITUDE LAB NUMBE DATE SAMF	t) E ER	TH11-464 34.8-35.2 N66.99835° W160.50574° 11-2545 18-Nov-11	TH11-465 9.0-13.0 N66.99941° W160.50586° 11-2546 18-Nov-11	TH11-466 2.3-2.7 N66.99942° W160.50369° 11-2547 18-Nov-11	TH11-466 4.8-5.2 N66.99942° W160.50369° 11-2548 18-Nov-11	TH11-466 20.0-24.0 N66.99942° W160.50369° 11-2549 18-Nov-11	TH11-467 8.8-9.2 N66.99937° W160.50124° 11-2550 18-Nov-11	TH11-467 16.8-17.2 N66.99937° W160.50124° 11-2552 18-Nov-11
% Passing	3"	10-1400-11	10-1400-11	10110111	10 1400 11	10110111	101107 11	10110111
Gravel	2" 1.5" 1.0" 0.75" 0.5" 0.375"		100 99 96			99 97 93 90 80		
	#8		91.4			73.8		
	#10		90.5			72.7		
	#16	; 	85.8			68.1		
	#20							
Sand	#40		78.1			61.1		
	#50		75.2			58.5		
	#60		73.6			57.2		
	#80		70.1 85.4			54.6 52.8		
Silt/Clay	#100 #200		57.3			45.3		~
SilvGlay	0.02		07.0			170.0		
Hydro	0.005 0.002 0.001							
LIQUID LIMIT	Γ		29			19	35	
PLASTIC INC			NP			4	NP	
USCS CLASS			ML			SC-SM		
USCS SOIL I	DESCRIPTION	(SiSa w/Gr)	SaSi	(SaSi w/Gr)	(PGSa w/Si&Gr)	SiCISa w/Gr	(SaSi)	(PGSa w/Si&Gr)
NATURAL M	OISTURE	16.2			30.6			19.3
ORGANICS				9.2			5.4	
SP. GR. (FIN								
SP. GR. (CO)								
MAX. DRY D								
OPTIMUM MO								ļ
DEGRAD. FA								
SODIUM SUL	J							
SODIUM SUL								
NORDIC ABF	RASION							
REMARKS		1		Org ¹			Org ¹	
OEMEDAL OF	0141451450							

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

¹ Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER: AKSAS NUMBER:

SAMPLED BY:

63179 T. Weiss

MATERIAL SOURCE:

MATERIAL SITE (A-1)

		·			·		,	
TEST HOLE		TH11-468	TH11-468	TH11-468	TH11-469	TH11-469	TH11-469	TH11-469
DEPTH (fee	t)	9.0-14.0	16.8-17.2	19.0-23.0	8.8-9.2	10.0-14.0	17.3-17.7	25.0-30.0
LATITDUE		N67.00035°	N67.00035°	N67.00035°	N67.00156°	N67.00156°	N67.00156°	N67.00156°
LONGITUDE		W160.50439°	W160.50439°	W160.50439°	W160.50261°	W160.50261°	W160.50261°	W160.50261°
LAB NUMBE		11-2553	11-2554	11-2555	11-2556	11-2557	11-2558	11-2559
DATE SAME		19-Nov-11	19-Nov-11	19-Nov-11	19-Nov-11	19-Nov-11	19-Nov-11	19-Nov-11
% Passing	3"							
	2"							
	1.5"							
Gravel	1.0"	99		100		99		99
3,5,5	0.75"	98		99		98		99
	0.5"	92		96		93		94
	0.375"	86		93		87		89
	#4	69		82		68		74
	#8	56.2 54.3		72.5 71.1		51.6 49.4		62.3 60.3
	#10 #46					39.8		52.7
	#16 #20	45.7		65.7		39.0		32.1
Sand	#20 #40	36.7		59.0		30.4		44.1
04174	#40 #50	34.5		56.6		28.3		41.6
	#60	33.4		55.3		27.3		40.4
	#80	31.3		52.7		25.6		37.9
	#100	29.9		51.5		24.4		36.3
Silt/Clay	#200	23.6		45.4		19.2		29.1
One only	0.02	2010		1011	***************************************			
	0.005							
Hydro	0.002							
	0.001							
LIQUID LIMI	T	NV		21		NV		NV
PLASTIC IND		NP		4		NP		NP
USCS CLAS		SM		SC-SM		SM		SM
USCS SOIL I	DESCRIPTION	SiSa w/Gr	SiSa w/Gr	SiCISa	SiSa w/Gr	SiSa w/Gr	(PGSa	SiSa w/Gr
		w/Gr	w/Gr	w/Gr	w/Gr	w/Gr	w/Si&Gr)	w/Gr
NATURAL M	OISTURE		17.4		10.5		7.8	
ORGANICS								
SP. GR. (FIN								
SP. GR. (CO.	′					:		
MAX. DRY D				ļ				
OPTIMUM M								
L.A. ABRASI								
DEGRAD. FA]					
SODIUM SUI	' '							l
SODIUM SUI NORDIC ABI			ĺ					Į.
	VASION							
REMARKS				and the second				
					ļ			
			ļ		-			
1								

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

 $\label{eq:worker} \text{USCS Soil Description Abbreviations: } \text{WG = Well-graded; } \text{PG = Poorly-graded; } \text{E = Elastic; } \text{L = Lean; } \text{F = Fat}$

¹ Organic content determination is based on the results of the ATM T-6 test method.

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER: AKSAS NUMBER:

63179 T. Weiss

SAMPLED BY: MATERIAL SOURCE:

MATERIAL SITE (A-1)

						· · · · · · · · · · · · · · · · · · ·		
TEST HOLE		TH11-470	TH11-470	TH11-470	TH11-470	TH11-471	TH11-471	TH11-471
DEPTH (feet	·)	11.3-11.7	11.7-15.0	15.0-20.0	28.8-29.2	14.0-19.0	24.0-29.0	32.8-33.2
LATITDUE		N67.00151°	N67.00151°	N67.00151°	N67.00151°	N67.00282°	N67.00282°	N67.00282°
LONGITUDE		W160.50529°	W160.50529°	W160.50529°	W160.50529°		W160.50467°	W160.50467°
LAB NUMBE		11-2560	11-2561	11-2562	11-2563	11-2564	11-2565	11-2566
DATE SAMP		19-Nov-11	19-Nov-11	19-Nov-11	19-Nov-11	20-Nov-11	20-Nov-11	20-Nov-11
% Passing	3"							
	2"						organization of the state of th	
	1.5"							
Gravel	1.0"		100	100		99		
O, avo,	0.75"		99	99		97		
	0.5"		97	96		91		
	0.375"		93	93		85		
	#4		81	79		67	95	
	#8		68.3	64.8		53.6	94.0	
	#10		66.3	62.8		51.8	93.8	
	#16		57.8	54.0		43.0	93.1	
	#20							
Sand	#40		47.3	42.9		33.2	91.6	
	#50		43.8	39.3		29.7	90.7	
	#60		42.3	37.6		28.2	90.3	
	#80		39.2	34.5		25.7	89.5	
	#100		37.9	32.6		24.7	89.2	
Silt/Clay	#200		30.4	25.3		20.1	87.6	
	0.02							
Hydro	0.005							
,	0.002							
	0.001							
LIQUID LIMIT	Γ		NV	NV		NV	33	
PLASTIC IND	DEX		NP	NP		NP	7	
USCS CLASS	SIFICATION		SM	SM		SM	ML	
11000 0011 1	DESCRIPTION	SiSa	SiSa	SiSa	(SaSi)	SiSa	Si	Si
0303 301L L	DESCRIF HON	w/Gr	w/Gr	w/Gr		w/Gr		
NATURAL M	OISTURE	13.9			24.1			32.9
ORGANICS								1.3
SP. GR. (FIN	E)							
SP. GR. (CO)	ARSE)							
MAX. DRY D	ENSITY							
OPTIMUM M								
L.A. ABRASI	-							
DEGRAD. FA			34					
SODIUM SUL								
SODIUM SUL								
NORDIC ABF	RASION							
REMARKS								
OFMEDAL O	0141451450	0.1.1.1.1		.1 20 1	I' . Al. I. T.	M. d. LT.7		

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

¹ Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: 63179 SAMPLED BY: T. Weiss

MATERIAL SOURCE: MATERIAL SITE (A-1)

						_	
TEST HOLE NUMBER DEPTH (feet) LATITDUE LONGITUDE LAB NUMBER DATE SAMPLED	TH11-472 9.8-10.2 N67.00372° W160.50597° 11-2567 20-Nov-11	TH11-472 25.0-30.0 N67.00372° W160.50597° 11-2568 20-Nov-11	TH11-473 15.0-23.0 N67.00436° W160.50453° 11-2570 21-Nov-11	TH11-473 15.1-23.0 N67.00436° W160.50453° 11-2570b 21-Nov-11			
% Passing 3" 2" 1.5" 1.0" 0.75" 0.375"		100 98 94 90	97 91 73 59 36 25				
#4 #8 #10 #16 #20 Sand #40 #50 #60 #80 #100		79 71.1 70.4 66.8 61.2 58.9 57.7 55.2 53.6	7.1 6.7 6.5 6.1 5.9				
Silt/Clay #200		46.4	4.8				
0.02 Hydro 0.005 0.002 0.001		40.4	4.0				
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION		23 3 SM	NV NP GP				
USCS SOIL DESCRIPTION NATURAL MOISTURE	33.3	SiSa w/Gr	PGGr	PGGr			
ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) SODIUM SULF. (FINE) NORDIC ABRASION	4.6		61	58			
REMARKS	sl Org ¹			2nd Deg from 11-2570.			
GENERAL COMMENTS	Gradation is base	d on material pacein	a the 3" sieve accor	ding to Alacka Test	Method T-7		

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

¹ Organic content determination is based on the results of the ATM T-6 test method.

APPENDIX C

MATERIAL SOURCE: BORROW SITE A-6
TEST HOLE LOGS AND LABORATORY TEST RESULTS:

0 100 200

- FIGURE 19 -

Org 2.0- Nbn

(4.8 - 5.2)

NM 10.3%

(7.3 - 7.7)NM 31.3%

(15.0 - 18.0)SM, 46.5% -200 NV, NP 18.5-Consistent 19.5- Organic zones SAMPLE 11-2503

(20.8 - 21.4)NM 28.3%, ORG 0.7% 23.5- Nbn SAMPLE 11-2504 (26.0-29.5) SM, 45.4% -200 NV, NP

Gy-Bn SILT sl Org

Gy-Bn SILT w/ Sa Nbe Gy Sa SILT sl Org, Nbe

SAMPLE 11-2508

SAMPLE 11-2509

SAMPLE 11-2510

(21.0-25.0) SM, 49.5% -200

NM 33.0%, ORG 1.9% 19.0-Wood chips

(5.8-6.2) ORG 2.2%

Tn Si SAND Nbe

(14.3 - 14.7)

21.0-Nbn

NV, NP

SAMPLE 11-2500

SAMPLE 11-2501

SAMPLE 11-2502

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES ENGINEERING GEOLOGY UNIT

KIANA AIRPORT IMPROVEMENTS

Vert

20-1

DATA: BORROW SITE (A-6) DRAWN: CP APPROVED: TW PROJECT NO. 63179 DATE: JUNE 2012 PAGE 65

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE:

MATERIAL SITE (A-6)

TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-451 4.8-5.2 13+10 1350L 11-2500 11-Nov-11	TH11-451 7.3-7.7 13+10 1350L 11-2501 11-Nov-11	TH11-451 15.0-18.0 13+10 1350L 11-2502 11-Nov-11	TH11-451 20.8-21.4 13+10 1350L 11-2503 11-Nov-11	TH11-451 26.0-29.5 13+10 1350L 11-2504 11-Nov-11	TH11-452 5.8-6.2 10+00 1300L 11-2505 11-Nov-11	TH11-452 11.0-15.0 10+00 1300L 11-2506 11-Nov-11
% Passing 3" 2" 1.5" 1.0" 0.75" 0.5" 0.375" #4							
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100			98.8 97.8 93.0 89.0		99.0 98.2 94.3 89.3		96.6 90.0 84.8 69.4 62.0
Silt/Clay #200			46.5		45.4		27.3
0.02 Hydro 0.005 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION			NV NP SM		NV NP SM		NV NP SM
USCS SOIL DESCRIPTION	(Si w/Sa)	(SaSi)	SiSa	SiSa	SiSa	(SiSa)	SiSa
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) SODIUM SULF. (FINE) NORDIC ABRASION	103.0	31.3		28.3 0.7		25.9	2.69
REMARKS							

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

¹ Organic content determination is based on the results of the ATM T-6 test method.

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE:

MATERIAL SITE (A-6)

					~		
TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-178 4.0-4.5 13+80 400L 11-2266 23-Jul-11	TH11-178 12.0-15.0 13+80 400L 11-2267 23-Jul-11	TH11-179 9.0-9.5 12+70 840L 11-2268 23-Jul-11	TH11-452 17.8-18.2 10+00 1300L 11-2507 11-Nov-11	TH11-453 5.8-6.2 12+50 1850L 11-2508 11-Nov-11	TH11-453 14.3-14.7 12+50 1850L 11-2509 11-Nov-11	TH11-453 21.0-25.0 12+50 1850L 11-2510 11-Nov-11
% Passing 3" 2" 1.5" 1.0" 0.75" 0.275"							98 98 96 94
0.375" #4 #8 #10 #16							86 79.5 78.7 75.5
#20 Sand #40 #50 #60 #80 #100		99.0 97.4 95.9 91.2 85.9					69.9 67.3 65.9 62.8 60.5
Silt/Clay #200 0.02		42.2					49.5
Hydro 0.005 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION		NV NP SM					NV NP SM
USCS SOIL DESCRIPTION	(SaSi)	SiSa	(SaSi)	(SiSa)	(SaSi)	(SiSa)	SiSa w/Gr
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) SODIUM SULF. (FINE) NORDIC ABRASION	32.6 1.4		38.0 2.7	36.7 1.1	2.2	33.0 1.9	
REMARKS			sl Org ¹		sl Org¹		

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

¹ Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE:

MATERIAL SITE (A-6)

TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-179 15.0-15.5 12+70 840L 11-2269 23-Jul-11	TH11-179 19.5-23.5 12+70 840L 11-2270 23-Jul-11	TH11-180 9.0-9.5 3+00 1150L 11-2271 23-Jul-11	TH11-180 12.0-12.5 3+00 1150L 11-2272 23-Jul-11	TH11-180 16.0-16.5 3+00 1150L 11-2273 23-Jul-11	TH11-181 4.0-4.5 5+90 750L 11-2274 23-Jul-11	TH11-181 5.0-8.0 5+90 750L 11-2275 23-Jul-11
% Passing 3" 2" 1.5" 1.0" 0.75" 0.5" 0.375" #4							
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100		99.2 97.5 95.7 88.1 78.9					
Silt/Clay #200		24.5					84.9
0.02							
Hydro 0.005 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION		NV NP SM					NV NP ML
USCS SOIL DESCRIPTION	(SiSa)	SiSa	(SaSi)	(SaSi)	(SaSi)	Si w/Sa	Si w/Sa
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) NORDIC ABRASION	20.7 0.4		37.9 4.3	34.1 1.8	32.8 1.3	45.1 2.7	
REMARKS			sl Org ¹			sl Org ¹	

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

¹ Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE:

MATERIAL SITE (A-6)

TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-181 16.5-17.0 5+90 750L 1 1-2276 23-Jul-11	TH11-182 6.5-7.0 0+70 450L 11-2277 23-Jul-11	TH11-182 13.5-14.0 0+70 450L 11-2278 23-Jul-11	TH11-183 5.0-5.5 -3+90 200R 11-2279 24-Jul-11	TH11-183 14.0-14.5 -3+90 200R 11-2280 24-Jul-11	TH11-183 19.0-19.5 -3+90 200R 11-2281 24-Jul-11	TH11-184 11.0-11.5 5+40 780R 11-2282 24-Jul-11
% Passing 3" 2" 1.5" 1.0" 0.75" 0.5" 0.375" #4							
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100							
Silt/Clay #200							
0.02 0.005 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION	N						
USCS SOIL DESCRIPT	TION (Si w/Sa)	(SaSi)	(SaSi)	(SiSa)	(SaSi)	(SiSa)	(SiSa)
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE SODIUM SULF. (FINE) NORDIC ABRASION	39.3 2.2	35.1 3.4	34.1 1.7	29.5 0.9	40.6 1.5	37.5 1.8	32.7 2.5
REMARKS	sl Org ¹	sl Org ¹					sl Org ¹

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE:

MATERIAL SITE (A-6)

							.,
TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-184 17.0-17.5 5+40 780R 11-2283 24-Jul-11	TH11-185 15.0-16.0 8+00 300R 11-2284 24-Jul-11	TH11-185 19.5-20.0 8+00 300R 11-2285 24-Jul-11	TH11-186 7.5-8.0 13+70 90R 11-2286 24-Jul-11	TH11-186 9.0-11.5 13+70 90R 11-2287 24-Jul-11	TH11-187 15.0-15.5 16+10 300R 11-2288 24-Jul-11	TH11-188 4.5-5.0 11+65 720R 11-2289 24-Jul-11
% Passing 3" 2" 1.5" 1.0" 0.75" 0.5" 0.375" #4							
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100					99.2 94.9		
Silt/Clay #200					85.2		
0.02 0.005 0.002 0.001							
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION					NV NP ML		
USCS SOIL DESCRIPTION	(SaSi)	(SaSi)	(SaSi)	(SiSa)	Si	(SaSi)	(SaSi)
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) SODIUM SULF. (FINE)	41.0 3.6	35.1 1.5	36.6 1.9	39.6 3.3		38.9 4.2	33.7 2.5
NORDIC ABRASION							
REMARKS	sl Org ¹			sl Org ¹		sl Org ¹	sl Org ¹
						<u> </u>	

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

¹ Organic content determination is based on the results of the ATM T-6 test method.

(Soil descriptions shown in parentheses are based on field determinations.)

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: 63179 SAMPLED BY: T. Weiss

MATERIAL SOURCE: MATERIAL SITE (A-6)

TEST HOLE NUMBER DEPTH (feet) STATION OFFSET LAB NUMBER DATE SAMPLED	TH11-188 19.5-20.0 11+65 720R 11-2290 24-Jul-11	TH11-190 4.0-7.5 20+50 870R 11-2291 24-Jul-11	TH11-190 10.0-10.5 20+50 870R 11-2292 24-Jul-11		
% Passing 3"	24-301-11	24-341-11	24-301-11		
2" 1.5" 1.0" 0.75" 0.5" 0.375" #4					
#8 #10 #16 #20 Sand #40 #50 #60 #80 #100		99.4 98.8			
Silt/Clay #200		83.1			
0.02 0.005 0.002 0.001					
LIQUID LIMIT PLASTIC INDEX USCS CLASSIFICATION		NV NP ML			
USCS SOIL DESCRIPTION	(SaSi)	Si w/Sa	(SiSa)		
NATURAL MOISTURE ORGANICS SP. GR. (FINE) SP. GR. (COARSE) MAX. DRY DENSITY OPTIMUM MOISTURE L.A. ABRASION DEGRAD. FACTOR SODIUM SULF. (CRSE) SODIUM SULF. (FINE) NORDIC ABRASION	31.9 2.6		38.5 2.8		
REMARKS	sl Org ¹		sl Org ¹		

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

¹ Organic content determination is based on the results of the ATM T-6 test method.

APPENDIX C

MATERIAL SOURCE RECONNAISSANCE: LABORATORY TEST RESULTS and ASBESTOS SAMPLE RESULTS:

PROJECT NAME:

Kiana Airport Improvements

PROJECT NUMBER:

AKSAS NUMBER: SAMPLED BY: 63179 T. Weiss

MATERIAL SOURCE: RECONNAISSANCE MATERIAL SITE (A-1 THRU A-5)

TEST HOLE		MS-A-3	MS-A-4	MS-A-2	MS-A-5-1	MS-A-5-2	MS-A-5-3	MS-A-1
DEPTH (feet	*)	0.0-1.5	0.0-1.5	0.0-1.5	0.0-1.5	0.0-1.5	0.0-1.5	0.0-1.5
LATITUDE		N66.9284°	N66.95092°	N66.94335°	N66.98102°	N66.9824°	N66.9827°	N67.00004°
LONGITUDE	=	W160.5585°	W160.4866°	W160.5613°	W160.41937°	W160.4196°	W160.4197°	W160.502°
LAB NUMBE	R	11-2200	11-2201	11-2202	11-2203	11-2204	11-2205	11-2317
DATE SAMP	PLED	14-Jul-11	14-Jul-11	15-Jul-11	15-Jul-11	15-Jul-11	15-Jul-11	26-Jul-11
% Passing	3"							
	2"	98		95		99		88
	1.5"	96	98	89	99	99	98	83
0	1.0"	87	87	78	98	99	95	71
Gravel	0.75"	79	81	71	97	99	93	60
	0.5"	68	70	60	95	98	88	49
	0.375"	62	63	54	94	98	85	42
	#4	47	45	39	90	97	76	28
	#8	32.8	33.3	28.2	86.1	95.6	68.0	18.7
	#10	29.9	31.3	26.4	85.5	95.4	66.7	17.5
	#16	16.9	20.8	18.0	80.5	94.7	60.5	13.1
	#20							
Sand	#40	5.8	5.6	6.8	47.2	92.4	49.8	8.6
	#50	4.0	3.9	4.6	29.6	89.2	45.0	7.7
	#60	3.4	3.4	3.9	24.7	86.6	42.6	7.4
	#80	2.6	2.8	2.9	14.6	78.8	37.6	6.7
	#100	2.4	2.6	2.6	11.2	72.3	34.4	6.5
Silt/Clay	#200	1.5	1.9	1.4	4.9	40.3	23.2	4.9
10.000 St. 1000 St. 1	0.02							
I In colors	0.005							
Hydro	0.002							
	0.001							
LIQUID LIMIT		NV	NV	NV	NV	NV	NV	NV
PLASTIC INE		NP NP	NP	NP	NP NP	NP	NP	NP
USCS CLASS		GP	GP	GP	SP	SM	SM	GW
USUS CLAS	SILICATION	Gi	OI .	Oi.	0,	OW	0111	0
Here soll I	DESCRIPTION	PGGr	PGGr	PGGr	PGSa	SiSa	SiSa	WGGr
0303 301L 1	JESOMI HOW	w/Sa	· w/Sa	w/Sa	w/Gr		w/Gr	w/Sa
NATURAL M	OISTURE							
ORGANICS	OIGTORE							
SP. GR. (FIN	r <u>=</u> \							
SP. GR. (CO)	,							
MAX. DRY D	· /							
OPTIMUM M								
L.A. ABRASI		44	27	35				37
DEGRAD. FA		41	37 58	35 68				39
SODIUM SUL		51	ეგ	98				3 9
SODIUM SUL	, ,							
NORDIC ABI	` ′							
NONDIO ADI	VAGIOIV							
REMARKS								
							L	

GENERAL COMMENTS

Gradation is based on material passing the 3" sieve, according to Alaska Test Method T-7.

(Soil descriptions shown in parentheses are based on field determinations.)

¹ Organic content determination is based on the results of the ATM T-6 test method.

EMSL Analytical, Inc.

2235 Polvorosa Ave , Suite 230, San Leandro, CA 94577

Phone: (510) 895-3675 Fax: (510) 895-3680 Email: sanleandrolab@emsl.com

Attn: Tim Weiss
Alaska DOT & PF
6860 Glacier Highway
Juneau, AK 99801

(907) 465-3506

.....

Project: 63179

Fax:

Phone: (907) 465-4449

49 EMSL Proj:

Analysis Date:

Customer ID:

Customer PO:

EMSL Order:

Received:

9/25/2011

AKDO62

091110295

NRPO-12-56070

09/12/11 9:00 AM

Test Report: PLM Analysis of Bulk Samples for Asbestos via EPA 600/R-93/116 Method with CARB 435 Prep (Milling). Level B for 0.1% Target Analytical Sensitivity

				Non	-Asbestos		P	sbestos
Sample	Description	Appearance	%	Fibrous	%	Non-Fibrous	%	Туре
11-2317	Material Site #1	Gray Non-Fibrous			100.00%	Non-fibrous (other)		None Detected
091110295-0001		Homogeneous						
11-2201	Material Site #2	Gray			100.00%	6 Non-fibrous (other)		None Detected
091110295-0002		Non-Fibrous Homogeneous						
11-2200	Material Site #3	Gray			100.00%	6 Non-fibrous (other)		None Detected
091110295-0003		Non-Fibrous Homogeneous						
11-2201	Material Site #4	Gray			100.00%	Non-fibrous (other)		None Detected
091110295-0004		Non-Fibrous Homogeneous						
11-2203	Material Site #5	Gray			100.00%	Non-fibrous (other)		None Detected
091110295-0005		Non-Fibrous Homogeneous						
11-2262	Airport Site, west	Gray			100.00%	6 Non-fibrous (other)		None Detected
091110295-0006		Non-Fibrous Homogeneous						

Initia	report	from
--------	--------	------

Analyst(s)

Baojia Ke (6)

by

Baojia Ke, Laboratory Manager or other approved signatory

This report relates only to the samples listed above and may not be reproduced except in full, without EMSL's written approval. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. EMSL is not responsible for sample collection activities or method limitations. Some samples may contain asbestos fibers below the resolution limit of PLM. EMSL recommends that samples reported as none detected or less then the limit of detection undergo additional analysis via TEM. Unless otherwise noted, the results in this report have not been blank corrected. Samples received in good condition unless otherwise noted.

Samples analyzed by EMSL Analytical, inc San Leandro, CA

Test Report PLMPTC-7.121.0 Printed:

THIS IS THE LAST PAGE OF THE REPORT.

APPENDIX D

SYMBOLS AND DEFINITIONS UNIFIED SOIL CLASSIFICATION SYSTEM DESCRIPTION AND CLASSIFICATION OF FROZEN SOILS

SYMBOLS AND DEFINITIONS

BASIC MATERIAL SYMBOLS

ASPHALT

CLAY (CI)

SILT (Si)

PEAT

ICE

YEAR-HOLE NUMBER LAT/LONG OR STATION, OFFSET ELEVATION (ft) DATE LOGGED WATER TABLE FROZEN DFPTH YEAR-HOLE NUMBER O5-41 Sta 210+53, Lt 3 Elev 375 16 JUN 24 ③ N VAI 25% 75% 75% 710% SAMP

FROZEN

POORLY GRADED SAND (So)

POORLY GRADED GRAVEL (Gr)

WELL GRADED SAND

WELL GRADED GRAVEL

BEDROCK (Bx), soft(Type)

BEDROCK (Bx), hard(Type)

SOFT OR HARD BEDROCK BASED ON DRILLING RATE NOTE

MAIN COMPONENT (UPPER CASE ... SOLID LINES)
MINOR COMPONENT (Title Cose ... DASHED LINES
OR SPARSER PATTERN)

USCS SIZE DEFINITIONS

BOULDERS (Boulders)	12"+
COBBLES (Cobbles)	3" TO 12"
GRAVEL	#4 TO 3"
ANGULAR FRAGMENTS	#10 +
SAND	#200 TO #4
SILT	#200 TO 0.005 mm
CLAY	MINUS 0.005 mm

TEST RESULTS

%-200	=	% PASSING #200 SIEVE
NM%	_	NATURAL MOÏSTURE
ORG%		ORGANIC CONTENT
SSc _	=	SODIUM SULFATE LOSS(coarse)
SSf _	=	SODIUM SULFATE LOSS(fine)
LA		LOS ANGELES ABRASION
DEG _		DEGRADATION
LL _	==	LIQUID LIMIT (NV = no value)
PI _		PLASTIC INDEX (NP = non-plastic)

MISC

IVII JO.		
Tr	=	TRACE
sl	=	SLIGHTLY
hi	=	HIGHLY
w/_ X'tls	=	WITH UNSPECIFIED AMOUNT
X'tls	=	CRYSTALS
TH	=	TEST HOLE
TT	=	TEST TRENCH
TP	=	TEST PIT

TYPICAL LOG

ATE LOGGED	16 JUN	
WATER	243	N VALUE
TABLE	A.D.	~25% ~50% DEDOCNT VICIBLE ICE
FROZEN		~50% PERCENT VISIBLE ICE ~100%
DEPTH (FEET)	15.0	SAMPLE INTERVAL STRATA CONTACT
POSSIBLY	② W.D.	COBBLE OR BOULDER (FROM AUGER REACTION)

1) Station value may also be on centerline e.g. Sta 210+53, CL or lat—long format e.g. N64.56789°, W145.67890°

REFUSAL

② W.D.= WHILE DRILLING, A.D.= AFTER DRILLING

(3) "N VALUE" INDICATES STANDARD PENETRATION TEST (1.4" I.D., 2.0" O.D. SAMPLER DRIVEN WITH 140 LB. HAMMER, 30" FREE FALL) AND IS SUM OF 2nd AND 3rd 6" OF PENETRATION.

PLAN VIEW SYMBOLS

	PLAN VIEW STWIDULS
⊗ ⊕	POWER AUGER TEST HOLE (TH) HAND AUGER TEST HOLE (TH)
\odot	EXPOSED MATERIAL
+	PROBE
	HAND DUG TEST PIT (TP)
	DOZER/BACKHOE TEST TRENCH (TT)
\sim	BODY OF WATER
	FLOW DIRECTION
×××××	WASTE BERM
AN	< BANK
<u>末</u>	SWAMP
~~~	TREELINE

#### SOIL DENSITY/CONSISTENCY DESCRIPTORS

JOIL DEIL	OTT / CONC	TOTELLO D		1111 10110
NON-COH	IESIVE [*]	<u>C</u>	COHES	IVE
RELATIVE	BLOWS/FOOT			BLOWS/FOOT
DENSITY	(N) VALUE	CONSIST	ENCY	(N) VALUE
VERY LOOSE	< 4	VERY S	SOFT	< 2
L00SE	5-10	SOFT		2 - 4
MEDIUM DENSE	11-30	FIRM		5-8
DENSE	31-50	STIFF		9-15
VERY DENSE	> 50	VERY S	STIFF	16-30
		HARD		> 30

#### COLOR

Bk = BLACK	Gy = GRAY	Tn = TAN
BI = BLUE	Or = ORANGE	Wh = WHITE
Bn = BROWN	Rd = RED	Yw = YELLOW
Gn = GREEN		

#### MOISTURE

		177 0	101	<u> </u>
dry	= <	OPTIMUM*		DUSTY, DRY TO THE TOUCH
moist	$\sim$	OPTIMUM:	*	DAMP, NO VISIBLE WATER
wet	= >	OPTIMUM*		VISIBLE FREE WATER
* OPTIMU	ЈМ МО	ISTURE F	FOR	MAXIMUM DENSITY

#### Classification of Soils for Engineering Purposes (Unified Soil Classification System)



Phase (a). (Independent of Frozen State)			-)	DESC	RIPTION AND CLA	SSIFICATION OF F	ROZEN	SOILS
	Major Group Sul		Sub-G	roup		Pertinent Properties of Frozen Materials	Guide for Construction on Soils Subject to Freezing and Thawing	
	Description (2)	Designation (3)	Description (4)	Designation (5)	Field Identification (6)	which may be measured by physical tests	Thaw Characteristics (8)	Criteria (9)
	Segregated ice is not visible by eye (b)		Poorly Bonded or Friable	Nf	determine presence of excess ice, use procedure under note (c) below and hand magnifying lens as necessary. For soils not fully saturated, estimate degree of ice saturation; Medium, Low. Note presence of crystals, or of ice coatings around larger particles.	In-Place Temperature Density and Void Ratio a) In Frozen State b) After Thawing in Place Water Content (Total H ₂ 0, including ice) a) Average b) Distribution Strength a) Compressive b) Tensile c) Shear d) Adfreeze Elastic Properties Plastic Properties Thermal Properties	1	The potential intensity of ice segregation in a soil is dependent to
		N	No excess ice Well Bonded Excess ice	n Nb			Usually Thaw-Stable	a large degree on its void sizes and may be expressed as an empirical function of grain size as follows:  Most inorganic soils containing 3 percent or more of grains finer than 0.02 mm in diameter by weight are frost-susceptible.  Gravels, well-graded sands and silty sands, especially those approaching the theoretical maximum density curve, which contain 1.5 to 3 percent finer than 0.02 mm by weight without being frost-susceptible. However, their tendency to occur
	Segregated ice is visible by eye. (Ice 1 inch or less in thickness) (b)	h V Random or irregularly oriented	crystals or inclusions	Vx	For ice phase, record the following as applicable: Location Size Orientation Shape Thickness Spacing Pattern of arrangement Length Hardness }		Usually Thaw-Unstable	being inder-susceptible. However, their rendency to occur interbedded with other soils usually makes it impractical to consider them separately.  Soils classed as frost-susceptible under the above criteria are
				Vo				likely to develop significant ice segregation and frost heave if frozen at normal rates with free water readily available. Soils so frozen will fall into the thaw-unstable category. However, they ma also be classed as thaw-stable if frozen with insufficient water to permit ice segregation.
Part III			irregularly oriented	Vr				
			Vs	Structure } per part III Below Color } Estimate volume of visible segregated ice present as percent of total sample volume	a) Orientation of Axes		Soils classed as non-frost-susceptible (*NFS) under the above criteria usually occur without significant ice segregation and are	
	Ice (Greater than 1 inch in thickness)	inche inche	Ice with soil inclusions	Ice + Soil Type	Designate material as ICE (d) and use descriptive terms as follows, usually one item from each group, as applicable:	b) Crystal size c) Crystal shape d) Pattern of Arrangement		not exact and may be inadequate for some structure application excaptions may also result from minor soil variations.
			Ice without soil inclusions	lce	Hardness Structure Color Admixtures Hard Clear e.g.: e.g.: Soft Cloudy Color- (mass. Porous less Thin Silt not indi- crystals) Granular Stratified  Hardness Structure Color Admixtures e.g.: e.g.: Color- Thin Silt not indi- Cranular Blue ions Stratified	Same as Part II above, as applicable, with special emphasis on Ice Crystal Structure.		In permafrost areas, ice wedges, pockets, veins, or other ice bodies may be found whose mode of origin is different from that described above. Such ice may be the result of long-time surfac expansion and contraction phenomena or may be glacial or other ice which has been buried under a protective earth cover.

#### DEFINITIONS:

ice Coatings on Particles are discernible layers of ice found on or below the larger soil Well-bonded signifies that the soil particles are strongly held together by the ice and that the frozen soil possesses relatively high resistance to chipping or breaking. particles in a frozen soil mass. They are sometimes associated with hoarfrost crystals, which have grown into voids produced by the freezing action.

Ice Crystal is a very small individual ice particle visible in the face of a soil mass. Crystals may be present alone or in a combination with other ice formations.

Clear ice is transparent and contains only a moderate number of air bubbles.(e)

Cloudy Ice is translucent, but essentially sound and non-pervious

Porous Ice contains numerous voids, usually interconnected and usually resulting from melting at air bubbles or along crystal interfaces from presence of salt or other materials in the water, or from the freezing of saturated snow. Though porous, the mass retains its structural unity.

Candled ice is ice which has rotted or otherwise formed into long columnar crystals, very loosely bonded together.

Granular Ice is composed of coarse, more or less equidimensional, ice crystals weakly bonded together.

Ice Lenses are lenticular ice formations in soil occurring essentially parallel to each other, generally normal to the direction of heat loss and commonly in repeated layers.

Ice Segregation is the growth of ice as distinct lenses, layers, veins and masses in soils, commonly but not always oriented normal to direction of heat loss.

Poorly-bonded signifies that the soil particles are weakly held together by the ice and that the frozen soil consequently has poor resistance to chipping or breaking.

Friable denotes a condition in which material is easily broken up under light to moderate pressure.

Thaw-Stable frozen soils do not, on thawing, show loss of strength below normal, long-time thawed values However, the impression to the unaided eye is that none of the nor produce detrimental settlement.

Thaw-Unstable frozen soils show on thawing, significant loss of strength below normal, long-time thawed (c) When visual methods may be inadequate, a simple field test values and/or significant settlement, as a direct result of the melting of the excess ice in the soil.

Modified from: Linell, K. A. and Kaplar, C. W., 1966, Description and Classification of Frozen Soils, Proc. International Conference on Permafrost (1963), Lafayette, IN, U.S. National Academy of Sciences, Publ. 1287, pp 481-487.

- (a) When rock is encountered, standard rock classification terminology should be used.
- (b) Frozen soils in the N group may on close examination indicate presence of ice within the voids of the material by crystalline reflections or by a sheen on fractured or trimmed surfaces. frozen water occupies space in excess of the original voids in the soil. The opposite is true of frozen soils in the V group.
- to aid evaluation of volume of excess ice can be made by placing some frozen soil in a small jar, allowing it to melt and observing the quantity of supernatant water as a percent of total volume.
- (d) Where special forms of ice, such as hoarfrost, can be distinguished, more explicit description should be given. (e) Observer should be careful to avoid being misled by surface scratches or frost coating on the ice.