

SUBSURFACE EXPLORATION

NOATAK MATERIAL SITE INVESTIGATION

NOATAK, ALASKA

August 2014

August 6, 2014 W.O. 61683.01 Area 8 Report No. 5532

Ms. Jackie Hill Director, Native Services Maniilaq Association. PO Box 256 Kotzebue, AK 99752

Subject: Subsurface Exploration Noatak Material Site Investigation, Noatak, Alaska

Dear Ms. Hill:

The attached report presents the results of our subsurface exploration for the Noatak Material Site Investigation in Noatak, Alaska. This report includes the logs of 15 test borings drilled during the current exploration, the results of laboratory tests, and interpretations regarding the extent of gravel resources available within the boundaries of the proposed material site.

If you have any questions regarding this report or its use, or if we may provide additional services, please call.

Sincerely, DOWL HKM

- the

Paul Pribyl Geologist

Attachment: As stated

Reviewed by: DOWL HKM

am

Keri Nutter, ČPG Manager, Geotechnical Engineering

907-562-2000 📕 907-563-3953 (fax) 📕 4041 B Street 🔳 Anchorage, Alaska 99503 🔳 www.dowlhkm.com

SUBSURFACE EXPLORATION NOATAK MATERIAL SITE INVESTIGATION NOATAK, ALASKA

Prepared for:

Maniilaq Association PO Box 256 Kotzebue, Alaska 99752

Prepared by:

DOWL HKM 4041 B Street Anchorage, Alaska 99503 (907) 562-2000

> W.O. 61683.01 Area 8 Report No. 5532

August 2014

TABLE OF CONTENTS

Page

$1.0 \\ 1.1 \\ 1.2 \\ 1.3$	INTRODUCTION Planned Development Purpose of Exploration Scope of Work	1 2
2.0 2.1	PHYSICAL SETTING	
3.0 3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	 1.2 Transition and Channel Zone 1.3 Channel Bar Zone Subsurface 2.1 Permafrost and Silt Zone 2.2 Transition and Channel Zone 	6 6 6 8 8 8 9 10
4.0 4.1 4.2 4.2 4.2	SITE OBSERVATIONS AND CONCLUSIONS Material Quality Selected Materials 2.1 Material Quantities 2.2 Excavation and Development Considerations	12 12 13
5.0 5.1	FIELD EXPLORATION Field Exploration	
$\begin{array}{c} 6.0 \\ 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \end{array}$	LABORATORY TESTS Moisture Content Particle Size Distribution Tests LA Abrasion Tests Degradation of Aggregates Test Sodium Sulfate Soundness	17 17 17 18
7.0	REFERENCES	19

FIGURES

Figure 1: Vicinity Map	1
Figure 2: Geomorphic Zone Map	
Figure 3: Surface Features Map	

TABLE OF CONTENTS (cont'd)

Page

TABLES

Table 1: Average Monthly Temperatures and Precipitation	3
Table 2: Observed and Measured Groundwater Levels of Test Borings	
Table 3: Measured Ground Temperatures	
Table 4: DOT&PF Aggregate Quality Specifications	12
Table 5: DOT&PF Selected Materials by Zone	12
Table 6: Estimated Area Dimensions/Thicknesses	13
Table 7: Estimated Quantities	13
Table 8: Los Angeles Abrasion of Aggregate Test Results	18
Table 9: Degradation of Aggregate Test Results	18
Table 10: Soundness of Aggregate by Use of Sodium Sulfate Test Results	18

APPENDICES

Appendix A	
	Laboratory Test Results
	Generalized Geologic Cross Sections Map
Appendix F	Generalized Geologic Cross Sections

1.0 INTRODUCTION

The Native Village of Noatak intends to establish a new gravel resource site on the west bank of the Noatak River. The site location is shown on Figure 1. This report presents the results of our field exploration, laboratory soil testing program, and interpretations of the extent of gravel resources within the boundaries of the proposed material site. This work was performed for Maniilaq Association on behalf of the Native Village of Noatak.

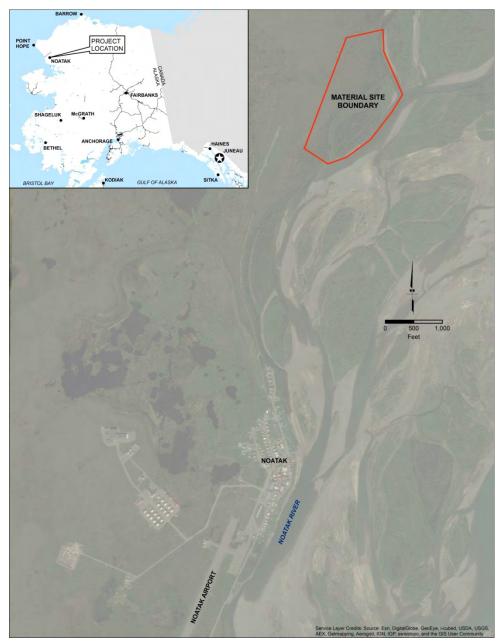


Figure 1: Vicinity Map

1.1 Planned Development

The proposed project includes the development of an open pit gravel quarry in the alluvial and/or glacial till sediments near the westernmost channel of the Noatak River, approximately 0.75 miles north of the Village of Noatak. Material from the proposed site would be used to extend the current cemetery road, road maintenance within the village, and potentially as a material source for the Department of Transportation and Public Facilities (DOT&PF) airport facility and runway.

1.2 Purpose of Exploration

The purpose of this exploration is to determine subsurface soil, permafrost, and groundwater conditions at the site; to perform laboratory soil tests to determine physical properties of the site soils; analyze the findings; and to make geologic interpretations regarding the extent of gravel resources within the boundaries of the proposed material site.

1.3 Scope of Work

DOWL HKM submitted a proposal dated November 12, 2013, to conduct a geotechnical exploration consisting of drilling and sampling test borings, geotechnical laboratory testing, analysis of the findings, and preparation of a report.

In brief, the scope included:

- Drilling and sampling of as many test borings as possible over a five day period to depths of 20 to 30 feet within the proposed material site boundaries;
- Placement of sealed PVC standpipe in select bore holes where ground ice is present to measure subsurface temperatures;
- Placement of slotted PVC standpipe in select test bore holes where groundwater was encountered to measure depth to the top of the water table;
- Performance of various laboratory soils testing;
- Analysis of the geotechnical aspects of the planned development with respect to the site soils and groundwater; and
- Preparation of a report of findings.

Our proposal was accepted and we received Notice-to-Proceed on April 3, 2014.

2.0 PHYSICAL SETTING

Noatak is located on the west bank of the Noatak River approximately 48 air miles north of Kotzebue. The proposed material site is located 0.75 miles to the north of Noatak centered on the coordinates 67.58763° N latitude and 162.95925° W longitude. The site is approximately 1,500 feet east-northeast of the end of the existing cemetery road. Noatak lies near the western boundary of the Noatak National Preserve and is the only village located on the Noatak River.

Bluffs along the Noatak River expose lacustrine and fine-grained deposits laid over glacial till, as well as terraced river gravels and floodplain deposits. These deposits vary in thickness from a few feet to several hundred feet and rest on volcanic and andesitic bedrock. There are generally layers of peat, organic soil, and/or silt overlying the glacial till and alluvial deposits. Noatak lies within an area of continuous permafrost. To the west and to the north of Noatak, the land surface contains many small lakes formed from the uppermost portions of the permafrost thawing and additional water accumulating in the depression.

2.1 Climate

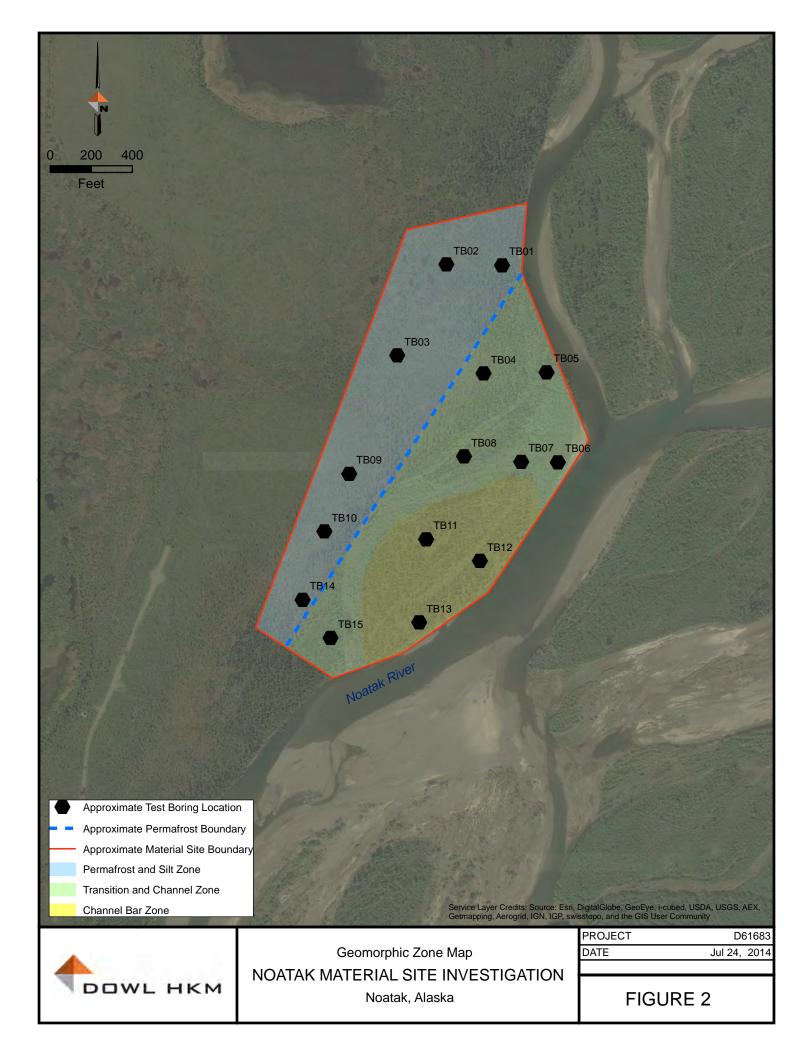
Noatak is located in the transitional climate zone; Kotzebue is the nearest community with historical climate data available. The climatological data presented below for Kotzebue and vicinity was taken from a range of sources including the Department of Commerce, Community, and Economic Development Community Database, and the National Weather Service.

Mean Annual Precipitation	10 in
Mean Annual Snowfall	50 in
Mean Maximum Temperature July	60°F
Mean Maximum Temperature January	5°F
Mean Minimum Temperature July	50°F
Mean Minimum Temperature January	-10°F
Average Summer Temperature Range	$45^\circ F - 55^\circ F$
Average Winter Temperature Range	$5^{\circ}F - 35^{\circ}F$
Freezing Degree Days (°F-day)	~5,750
Thawing Degree Days (°F-day)	~350
Heating Degree Days (°F-day)	~15,500

The climatological data presented in Table 1 below, from the Alaska Climate Research Center, shows average monthly temperatures and precipitation for Kotzebue and vicinity, for the period between 1981 and 2010.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Temperature (°F)	-2.8	-0.8	1.1	13.3	31.9	45.7	54.6	51.7	42.3	24.3	9.1	2.3
Precipitation (in)	0.62	0.66	0.44	0.41	0.41	0.58	1.45	2.18	1.58	1.01	0.77	0.76

 Table 1: Average Monthly Temperatures and Precipitation


3.0 SITE CONDITIONS

This section reports interpretations and opinions concerning the surface and subsurface soil and groundwater conditions at the site. The site conditions described are valid for the data collected within the scope of work. If additional data becomes available, some or all of the interpretations and opinions expressed herein could change. We should be notified immediately if the conditions found at the site are different from those encountered during this investigation.

The soil descriptions and stratigraphy contained herein and the classifications shown on the test boring logs are the project geologist's *interpretation* of the field logs and the results of the laboratory soil testing. The location of test borings are shown in Appendix A, Test Boring Location Map. Refer to the Test Boring Log - Descriptive Guide in Appendix B immediately following the test boring logs for a more detailed presentation on sample sizes, sample quality, frost classifications, soil types, and the soil classification procedures.

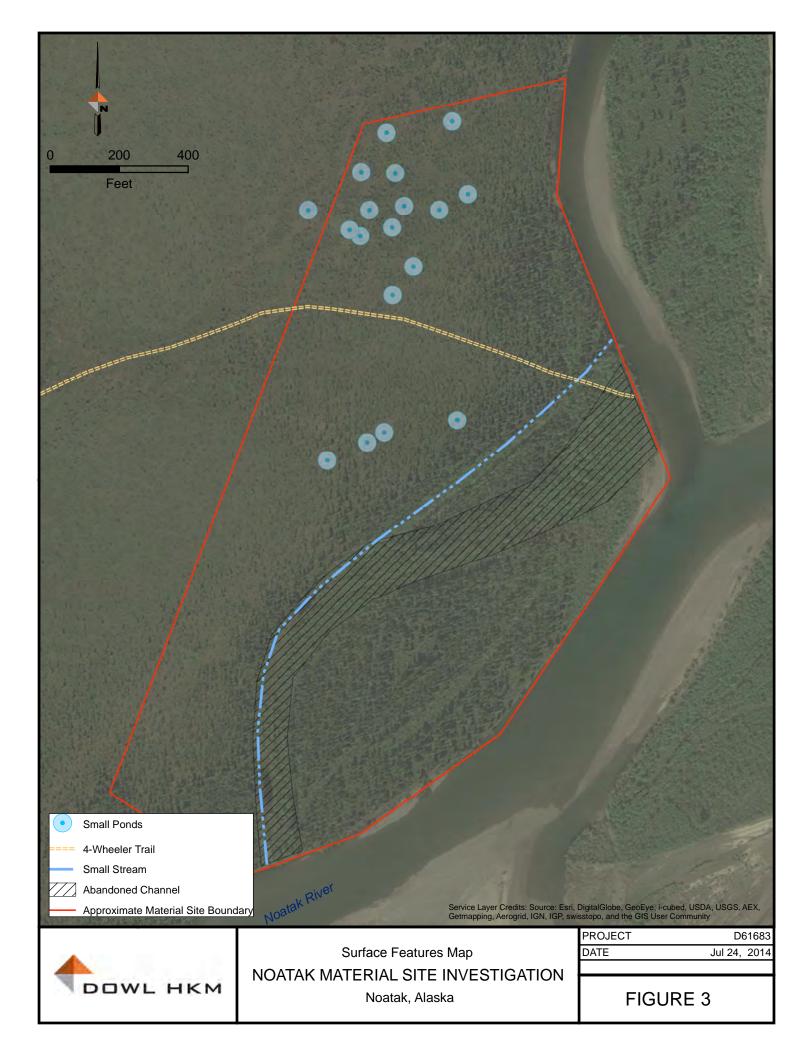
The largest particle size that can be recovered with standard drill hole samplers is often smaller than the maximum particle size in a gravelly soil deposit. Therefore, the soil descriptions and test results for gravelly soils tend to be biased toward the finer particle sizes. The gradation test results are presented in Appendix C, Laboratory Test Results.

The proposed material site can be roughly broken into three distinct geomorphic zones or landforms; each zone has different surface and subsurface attributes. These zones can be divided approximately between the western third, the southeastern area, and the central strip dividing them. Within this report these zones will be referred to as the permafrost and silt zone, the transition and channel zone, and the channel bar zone, respectively. A geomorphic zone map showing the approximate delineation of each area is shown in Figure 2.

3.1 Surface

Characteristics of subsurface deposits are often expressed on the surface through variation in topography, vegetation, and surficial waters. A summary of the surficial characteristics for the three geomorphic zones observed at the site follows. Surface features described below are shown in Figure 3.

3.1.1 <u>Permafrost and Silt Zone</u>


The surface of the permafrost and silt zone displays tundra vegetation typified by tussocks and stunted spruce. The elevation decreases from the ridge on which cemetery road is located toward the river; and there is a bench where the landscape flattens out on the northeastern side of this zone. Scattered across this bench are small surficial bodies of water generally less than 5 feet deep. These small ponds increase in abundance in the northwestern region of the proposed material site. A 4-wheeler trail runs east to west across the material site to the south of the majority of the small ponds. The western boundary of this zone is represented by a small topographic drop of approximately 2 to 5 feet; this boundary coincides with the approximate boundary of permafrost and is shown in Figure 2.

3.1.2 <u>Transition and Channel Zone</u>

The surface cover of the transition and channel zone progresses from tundra vegetation to dense alder and larger spruce trees. A crescent-shaped abandoned river channel starts at the point bar near the easternmost point of the proposed material site and curves back to the west and then to the south before terminating in the southeastern corner of the proposed site. This feature is most easily seen in satellite or aerial photography. A small stream was observed at the time of the investigation running along the western edge of the abandoned channel, which varied in depth from approximately 1 to 4 feet and varied in width from approximately 3 to 20 feet. The eastern edge of the abandoned channel forms the boundary with the third zone and is topographically defined by an approximately 5- to 8-foot increase in elevation on the eastern edge of the abandoned channel.

3.1.3 Channel Bar Zone

The surface of the channel bar zone displays a mossy surface cover below large spruce trees with spacing that varies from dense to scattered. This area is interpreted to be an old/abandoned, channel gravel bar. The topography of this area is fairly flat and is bounded on the eastern side by an approximately 8- to 12-foot abrupt topographic drop into the river.

3.2 Subsurface

The soils present vary between the three zones observed within the proposed material site, but the material within each zone was fairly consistent. An individual description of each zone follows:

3.2.1 <u>Permafrost and Silt Zone</u>

Test borings TB01, TB02, TB03, TB09, TB10, and TB14 were drilled in this zone. The peat and silt layer varied in thickness from 5.5 to 12.5 feet. Below this layer the soils were generally consistent. Underlying the frozen silt and peat are frozen gravels with silt, which extend to unknown depth.

Peat. The surficial peat extends from the ground surface to depths of one to two feet. The peat is amorphous to fibrous, saturated, and soft when thawed. Interbedded silt layers up to approximately 6 inches thick were also observed within the peat. The peat was frozen at the time of our investigation.

Silt and Silt with Sand. The peat is underlain by silt which extends to depths of 6.5 to 13 feet below the ground surface. This deposit generally ranges in classification from Silt (ML) to Silt with Sand (ML). The sand content varies from 0 to 23 percent and the moisture content of the silt ranges from 44 to 214 percent by weight with the higher values associated with interbedded peat and ice-rich soils. Random and irregularly orientated ice formations up to one-half-inch-thick were observed. The silt is frost susceptible (F4).

Gravel with Silt and Sand. The silt deposit is underlain by Poorly- to Well-Graded Gravel with Silt and Sand (GP-GM, GW-GM) that extends to depths of at least 10 to 20 feet below the ground surface, which is the extent of our exploration, and likely extends further to an unknown depth. The silt content varies from as low as 6 to 10 percent and the moisture content ranges from 5 to 18 percent. The gravel content ranges from 40 to 55 percent. This deposit was frozen with ice ranging from well bonded with no excess ice to segregated ice present as individual ice crystals and inclusions. This deposit is frost susceptible with the frost class ranging from F1 to F2. This deposit was tested for degradation of aggregates and sodium sulfate soundness. The results of those tests are presented in Section 5, Laboratory Tests.

3.2.2 <u>Transition and Channel Zone</u>

Test borings TB04, TB05, TB06, TB07, TB08, and TB15 were drilled within the transition and channel zone. Poorly- and Well-Graded Sands and Gravels were encountered below one to four feet of peat. A general description of the soil units follows:

Peat. The surficial peat extends from the ground surface to depths of one to four feet. The peat is amorphous to fibrous, saturated, and soft when thawed. Roots layers several inches thick were

encountered in the upper foot of peat. Interbedded silt layers up to 5 inches thick were also observed. The peat was frozen at the time of our investigation

Sand. The peat in borings TB05 and TB08 is underlain by sand with gravel which extends to depths of five to six feet below the ground surface. This deposit generally ranges in classification from Poorly- to Well-Graded Sand with Gravel (SP, SM) to Silty Sand (SM). The silt content varies from 5 to 16 percent and the moisture content ranges from 1 to 18 percent. The Well-Graded Sand with Gravel has a gravel content of about 30 percent and is not frost susceptible. The Silty Sand has a gravel content of seven percent and has a frost classification of F3.

Gravel with Sand. The sands are underlain by gravels which extend to depths of at least 20 to 25 feet below the ground surface. This deposit generally ranges in classification from Poorly- to Well-Graded Gravel with Sand (GP, GW). The silt content varies from one to three percent and the moisture content ranges from 3 to 15 percent. The gravel content of this unit ranges from 50 to 65 percent and is not frost susceptible. This unit was not frozen at the time of our investigation and groundwater as observed. This deposit was tested for degradation of aggregates, sodium sulfate soundness, and percent loss by Los Angeles (LA) abrasion. The results of those tests are presented in Section 5, Laboratory Tests.

3.2.3 <u>Channel Bar Zone</u>

Test Borings TB11NO, TB12NO, and TB13NO were drilled within the channel bar zone; a similar stratigraphy was encountered in all test borings within this zone. Below the approximate 1-foot-thick layer of peat and minor silt, gravel with sand is present to the depth of the exploration.

Peat. The surficial peat extends to depths of one to two feet. The peat is amorphous to fibrous, saturated, and soft when thawed. Root mats several inches thick were encountered in the upper foot of peat. Interbedded silt layers up to five inches thick were also observed. The peat was frozen at the time of our investigation.

Gravel with Sand. The peat is underlain by gravel with sand, which extends to depths of at least 20 to 25 feet below the ground surface. This deposit generally ranges in classification from Poorly- to Well-Graded Gravel with Sand (GP, GW). The silt content varies from one to two percent and the moisture content of the gravel with sand ranges from 3 to 10%. The gravel content in this deposit ranges from 60 to 68% and is not frost susceptible. This unit was not frozen and groundwater was observed. This deposit was tested for degradation of aggregates, sodium sulfate soundness, and percent loss by LA abrasion. The results of those tests are presented in Section 5, Laboratory Tests.

3.3 Groundwater

Slotted PVC standpipes were installed in seven of the test borings. Groundwater levels were measured in the standpipes 24 hours after drilling. The depth to groundwater was measured to be 7.5 to 14 feet below surface elevation in the transition zone. Groundwater was observed measured down open casing in two test borings where PVC could not be installed. The groundwater in the channel bar zone was measured at a depth of approximately 8 to 9 feet below surface elevation. Groundwater was not observed within the permafrost and silt zone. The approximate groundwater elevations above sea level are tabulated in Table 2. Groundwater measurements were obtained between April 30 and May 4, 2014. This is likely a seasonal spring thaw water level. Groundwater elevations at the proposed site are likely influenced by the Noatak River.

Zone	Boring	Approximate Groundwater Elevation (ft)	Depth to Groundwater (ft)	Date
	TB01	N.O.	N.O.	5-4-14
D	TB02	N.O.	N.O.	5-4-14
Permafrost and Silt	TB03	N.O.	N.O.	4-30-14
	TB09	N.O.	N.O.	5-4-14
	TB10	N.O.	N.O.	5-3-14
	TB14	N.O.	N.O.	5-3-14
	TB04	68	14	5-1-14
T •4•	TB05	67.5	7.5	5-1-14
Transition	TB06	66	6.5	5-1-14
and Channel	TB07	67	6	5-1-14
Channel	TB08	71	8	5-2-14
	TB15	69.5	8.5	5-4-14
	TB11	67	9	5-3-14
Channel Bar	TB12	66	8	5-3-14
	TB13	66	8	5-3-14

 Table 2: Observed and Measured Groundwater Levels of Test Borings

3.4 Permafrost

Permafrost was only observed in the permafrost and silt zone. The near-surface, frozen soils encountered in the upper few feet of the transition and channel bar zones are part of the active layer that freezes and thaws each year. It is expected that these near surface soils will be thawed by the end of the summer season before freezing again during the winter.

Within the permafrost and silt zone, frozen soils were encountered to the depth of our exploration. Sealed PVC standpipes were installed in Test Borings TB03, TB14, and TB10 to depths of 19, 14, and 13 feet, respectively. Thermistor strings with nodes at two-foot intervals were installed in these three borings and left for 24 hours to allow for temperatures to equilibrate

before measurements were made. The measured temperatures are shown tabulated in Table 3 and graphically in Appendix D: Thermistor Measurements.

	TB03		TB10	TB14		
Ai	r Temp. 44°	Ai	r Temp. 34°	Air Temp. 31°		
Depth (ft)	Temperature (°F)	Depth (ft)	Temperature (°F)	Depth (ft)	Temperature	
1	31.8	0	32.7	0	32.5	
3	31.9	2	32	2	32	
5	31.9	4	31.9	4	32	
7	32	6	31.7	6	32	
9	31.9	8	31.9	8	32	
11	32	10	31.9	10	32	
13	32	12	31.9	12	32	
15	31.6			14	31.8	
17	31.8					
19	29.8					

Table 3: Measured Ground Temperatures

3.5 Cross Sections

Three generalized geologic cross sections were prepared for this investigation that show the interpretation of the subsurface soils between test borings, the approximate boundary of the permafrost, and the groundwater level at the time of investigation. Geologic cross sections are two dimensional projections of the subsurface along a plane. Cross sections are the project geologist's interpretation of the test boring logs and the surficial features observed on-site. Generalized geologic cross sections show the approximate positions of the deposits and ignore minor variations in soil within a deposit. The actual soil stratigraphy may differ somewhat due to natural variations in the deposition of the soils. A map showing the location of the projections is located in Appendix E: Generalized Geologic Cross Sections Map. The three cross sections prepared for this investigation can be found in Appendix F: Generalized Geologic Cross Sections.

4.0 SITE OBSERVATIONS AND CONCLUSIONS

We found material that would be appropriate to be used for extending the current cemetery road, road maintenance within the village, and a material source for the DOT&PF airport facility and runway. The DOT&PF's quality and selected material specifications are discussed within this section. Here we also present our quantity estimates for the proposed material site.

4.1 Material Quality

Material quality refers to the materials resistance to breaking down due to wear and weathering. The tests most commonly used and specified by the DOT&PF for aggregates to determine quality include L.A. Abrasion, Degradation of Aggregates, and Soundness of Aggregate by Use of Sodium Sulfate. The DOT&PF specifications for aggregates in airport and highway construction are shown in Table 4. In general, the gravels tested met the DOT&PF material quality specifications.

		Minimum Specified Values				
	Airport Materials	LA Abrasion	Degradation of Aggregates	Sodium Sulfate Soundness		
	Subbase Coarse	< 50 %	> 40	Not Specified		
Airport	Aggregate Surface Coarse	< 50 %	> 45	< 12 %		
Materials	Crushed Aggregate Base Coarse	< 45 %	> 45	< 12 %		
	Hot Mix Asphalt Pavement	< 40 %	> 30	< 13 %		
	Subbase Coarse	< 50 %	> 40	Not Specified		
Highway	Base Coarse	< 50 %	> 45	< 9 %		
Materials	Aggregate Surface Course	< 45 %	> 45	< 9 %		
	Hot Mix Asphalt Pavement	< 45 %	> 30	< 9 %		

Table 4: DOT&PF Agg	regate Quality Specifications
---------------------	-------------------------------

4.2 Selected Materials

Selected Materials are generally aggregate containing no muck, frozen material, roots, sod, or other deleterious matter and must meet specific gradation requirements. Gravel material from 14 of the 15 test borings were tested for gradation. The gradation specifications met for gravel and sand material from each zone can be found in Table 5.

 Table 5: DOT&PF Selected Materials by Zone

Zone	Number of Borings Tested	Number Meeting Type A	Number Meeting Type B	Number Meeting Type C
Permafrost and Silt	5	-	4	1
Transition and Channel	6	6	1	1
Channel Bar	3	3	-	-

The silts are not suitable to be used in road or airport construction, but could possibly be used for berms around landfills, sewage lagoons, and other similar applications.

4.2.1 <u>Material Quantities</u>

The quantity of gravel available depends on a number of factors including excavation method and depth of excavation. Quantities have been calculated using an excavation depth of 25 feet as that is the extent of the majority of the test borings completed during this investigation. In the permafrost zone we expect that the ground will be continually frozen for the full depth of excavation. However, permafrost is likely to degrade quickly once the insulating peat layer is removed and excavation begins. If gravel from the permafrost and silt zone is selected for use, it must be thawed before being placed as compaction cannot be obtained using frozen material. The dimensions and estimated thickness of overburden, sand and gravel are shown in Table 6. In the permafrost and silt zone, few borings reached 25 feet depth and it is assumed that the Silty Gravel with Sand and Gravel with Silt and Sand continues to at least 25 feet. Overburden includes Peat and Silt materials. Groundwater elevation at the proposed site is influenced by the Noatak River and is likely variable annually and seasonally.

		Area	A			
Zone	Average Elevation (ft)	with 100' River Buffer (ft ²)	Overburden (ft)	Sand (ft)	Gravel (ft)	Average Groundwater Elevation
Permafrost and Silt	85	883,600	9.3	0	15.7	N.O.
Transition and Channel	77	603,100	2.2	1.7	21.1	68
Channel Bar	75	347,800	1.2	2.6	21.2	66

Table 6: Estimated Area Dimensions/Thicknesses

Material quantities shown in Table 7, Estimated Quantities, were calculated by:

- Using the dimensions shown in Table 6;
- Using the areas shown in Figure 2 minus an assumed 100-foot buffer along the Noatak River;
- Assuming side walls are sloped 2:1 along the perimeter above the water table and 3:1 below the water table,
- Reducing gravel and sand quantities by 5% to account for organic contamination of material from clearing and grubbing and during removal of the overburden, and
- Rounding all volumes down to the nearest thousand.

	Total Quantity			Total Quantity		
Zone	Overburden	Sand	Gravel	Overburden	Sand	Gravel
	(cubic feet)		(cubic yards)			
Permafrost and Silt	7,948,000	0	11,572,000	294,000	0	428,000
Transition and						
Channel	1,315,000	962,000	10,695,000	48,000	35,000	396,000
Channel Bar	415,000	836,000	6,251,000	15,000	30,000	231,000
TOTALS	9,678,000	1,798,000	28,518,000	357,000	65,000	1,055,000
	Quantity Above Water Table			Quantity Above Water Table		
Zone	Overburden	Sand	Gravel	Overburden	Sand	Gravel
	(cubic feet)		(cubic yards)			
Permafrost and Silt	7,948,000	0	11,572,000	294,000	0	428,000
Transition and						
Channel	1,315,000	962,000	2,850,000	48,000	35,000	105,000
Channel Bar	415,000	836,000	1,643,000	15,000	30,000	60,000
TOTALS A.W.T.	9,678,000	1,798,000	16,065,000	357,000	65,000	593,000
	Quantity Below Water Table		Quantity Below Water Table			
Zone	Overburden	Sand	Gravel	Overburden	Sand	Gravel
	(cubic feet)		(cubic yards)			
Permafrost and Silt	0	0	0	0	0	0
Transition and						
Channel	0	0	7,844,000	0	0	290,000
Channel Bar	0	0	4,608,000	0	0	170,000
TOTALS B.W.T	0	0	12,452,000	0	0	460,000

Table 7: Estimated Quantities

4.2.2 Excavation and Development Considerations

These preliminary quantities are based on the available elevation data and observations made during this investigation. Site survey resulting in generation of a true topographic map, as well as additional test borings, could result in significant changes in the quantities calculated.

5.0 FIELD EXPLORATION

This section presents the technical data obtained from the field exploration. The methods and procedures used in obtaining the data are presented. The data should be considered accurate only at the locations specified and only to the degree implied by the methods used. The data presented was obtained specifically to address the needs of the design, and may not be adequate for construction purposes.

5.1 Field Exploration

The test boring exploration for the Noatak Material Site Investigation project was conducted on April 30 through May 4, 2014. Fifteen test borings were drilled, sampled, and logged to depths of 10 to 25 feet within the proposed material site boundaries; greater depths were achieved in areas absent of permafrost. Within the permafrost and silt zone, the frozen soils created difficult and slow drilling conditions, causing test borings to be terminated at shallower depths, allowing more test borings to be completed in the limited time frame to better define the area conditions.

The test borings were located in the field using a hand-held Garmin Global Positioning System (GPS) eTrex-10 unit and recorded in the NAD83 datum. Test boring locations were initially selected through satellite photograph interpretation with the intention of characterizing the three major landforms/zones occurring within the proposed material site. The accuracy of the GPS unit is dependent on several factors including the number of satellites available, the position of the satellites, and the amount of tree cover at the location. Location coordinates are generally only accurate to +/- 20 feet. Location elevations are generally only accurate to +/- 50 feet. For that reason, test boring elevations were determined through the use of the Interferometric Synthetic Aperture Radar (IFSAR) Alaska data set processed in a Global Information System (GIS) software package. This data set contains a Digital Terrain Model (DTM) of bare earth elevations with a 3-meter confidence level of 90 percent and a 1-meter confidence level of 60 percent.

The test borings were performed by the direct push method using a GeoProbe 6712 DT drill rig equipped with a percussion hammer and 3-inch diameter steel Macro-Core sampler barrel. The rig is owned and operated by Discovery Drilling, Inc. of Anchorage. Direct push sampling is performed by advancing a sampling device into the subsurface soils by applying static pressure, by applying impacts, or by applying vibration or any combination thereof, to advance the sampler to the desired sampling depth. The sampler is recovered from the boring and the sample, contained in a PVC liner, is removed from the sampler. The drilling was supervised and the samples logged by Paul Pribyl, a geologist with our firm.

Direct push sampling allowed for continuous samples to be obtained from the surface to bottom of the test boring. Samples were obtained in 5-foot intervals except where frozen soils demanded shorter sampling intervals to prevent damage to the sampling barrel.

As the soil samples were recovered, they were visually classified and sealed in plastic bags to preserve the natural water content. The samples were then transported to DOWL HKM's laboratory in accordance with ASTM D4220, for further testing.

A slotted PVC standpipe was installed in 7 of the test borings and the depth to the groundwater was measured 24 hours after drilling to allow the water levels to stabilize. Sealed PVC standpipe was installed in 3 of the test borings and the subsurface temperatures were measured 24 to 30 hours after installation to allow the temperatures to equilibrate.

No environmental testing or monitoring was conducted as a part of this investigation

6.0 LABORATORY TESTS

This section of the report presents the technical data obtained during the soil laboratory testing in narrative, tabular, and graphic form. The methods and procedures used in obtaining the data are described herein. The data should be considered accurate only to the degree implied by the methods used.

The natural water content of nearly all the recovered samples was measured. Index testing consisting of grain size analysis was on selected samples. To determine if material from the proposed site would meet DOT&PF quality specifications for use within airport facilities, the additional analyses of LA abrasion, degradation of aggregates, and sodium sulfate soundness were performed on selected samples. Soil samples will be stored until November, 1, 2014, after which time they will be discarded unless other arrangements are made.

6.1 Moisture Content

The natural water content was determined in accordance with ASTM D2216, Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock, except due to limited sample sizes, some tests may have been performed on samples smaller than the minimum test size required by the standard. The water content is reported on the graphic test boring logs in Appendix B.

6.2 Particle Size Distribution Tests

Twenty-three particle-size distribution tests were performed on selected soil samples in accordance with ASTM D6913. These tests consisted of mechanical sieving; the results are presented graphically in Appendix C.

6.3 LA Abrasion Tests

Material from five test borings was selected for LA Abrasion testing following the AASHTO test method T 96, Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. Material had to be combined from several sample intervals within a single test boring (as opposed to a single sample interval) to meet the minimum sample size requirements. This test method is a measurement of particle resistance to breaking and wearing by mechanical abrasion, impact, and grinding in a rotating steel drum containing a specific number of steel spheres. The greater the resistance to abrasion, the less wear and breakdown is likely to occur during service. The LA abrasion test is an indicator of the relative competence or quality of the material tested. The lower the percent loss, the better and more resistant the material will respond to abrasion, impact, and grinding. The results of the tests are shown in Table 8.

Sample ID	Percent Loss
TB05 Depth 5'-20'	20
TB06 Depth 5'-25'	20
TB11 Depth 0.5'-25'	21
TB12 Depth 1'-25'	21
TB15 Depth 1'-25'	19

6.4 Degradation of Aggregates Test

Two degradation of aggregate tests were performed on combined samples from two test borings. The degradation value is an indication of the durability of an aggregate. The test uses a mechanical sieve shaker and a container of distilled water over a prescribed time interval and set oscillation speed. Degradation values range from 0 to 100, with higher values indicating higher quality material. This test is most applicable to crushed aggregate base course materials and their resistance to produce clay-size fines. The test is performed in accordance with Alaska Test Method 313, Standard Method of Test for Determining the Degradation Value of Aggregates. The results of the tests are shown in Table 9.

Table 9: Degradation of Aggregate Test Results

Sample ID	Deg. Value
TB02 Depth 10'-16'	85
TB11 Depth 0.5'-25'	87

6.5 Sodium Sulfate Soundness

Three sodium sulfate soundness analyses were performed on selected soil samples. This test determines aggregates' resistance to disintegration by weathering. The test uses immersion of the aggregate in a saturated sodium sulfate solution for 5 cycles of 17 hours each and subsequent drying. The formation of salt crystals during drying mimics the formation of ice crystals during freeze-thaw cycles. Lower percentages of disintegration indicate a higher level of soundness within the aggregate. The test is performed in accordance with AASHTO T104, Soundness of Aggregate by Use of Sodium or Magnesium Sulfate. The results of the tests are shown in Table 10.

Table 10: Soundness of Aggregate by Use of Sodium Sulfate Test Results

Sample Name	Aggregate Size	Percent Loss	
TB02 Dopth 10' 12'	Coarse	2.9	
TB02 Depth 10'-13'	Fine	1.8	
TROG Dorth 5' 0'	Coarse	0.2	
TB06 Depth 5'-9'	Fine	0.6	
TP11 Dopth () 5' 25'	Coarse	0.9	
TB11 Depth 0.5'-25'	Fine	0.4	

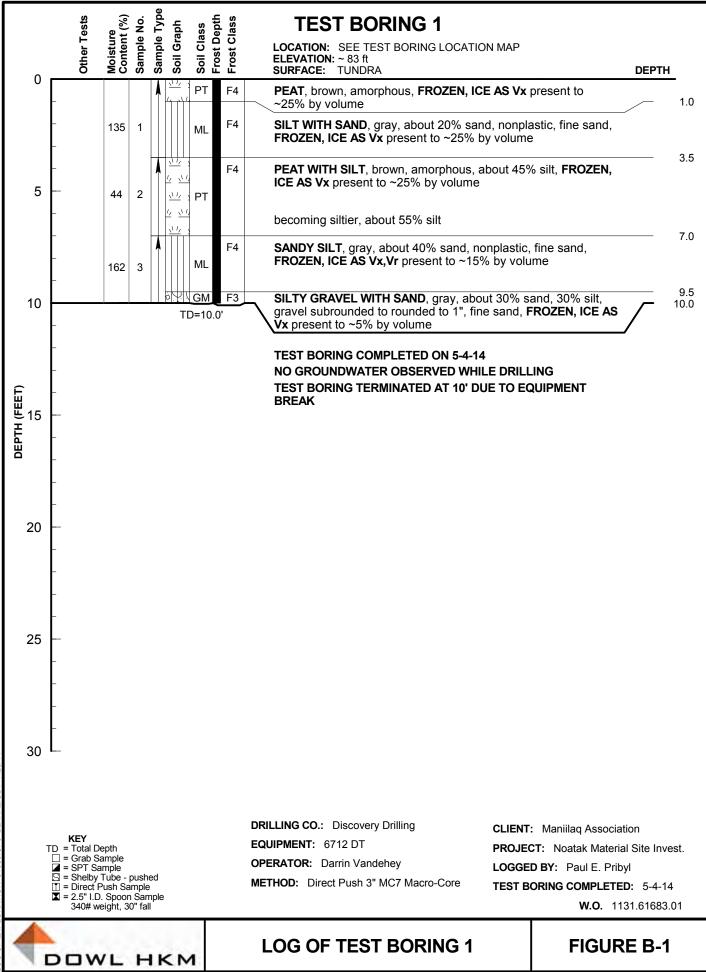
7.0 **REFERENCES**

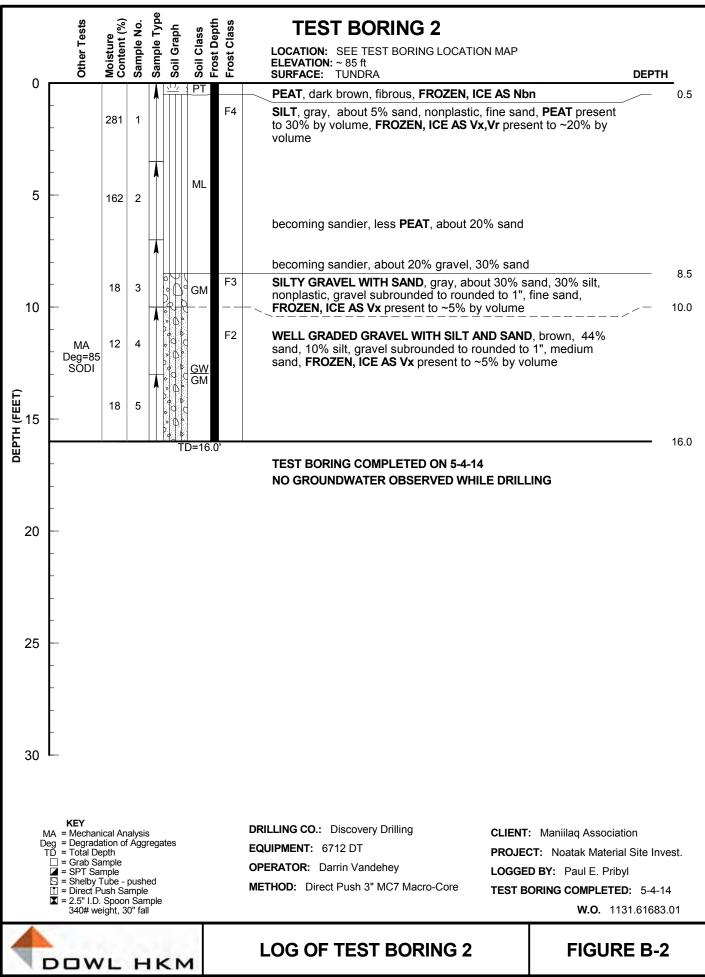
Alaska Climate Research Center, Climate Normals, retrieved from: http://climate.gi.alaska.edu/Climate/Normals

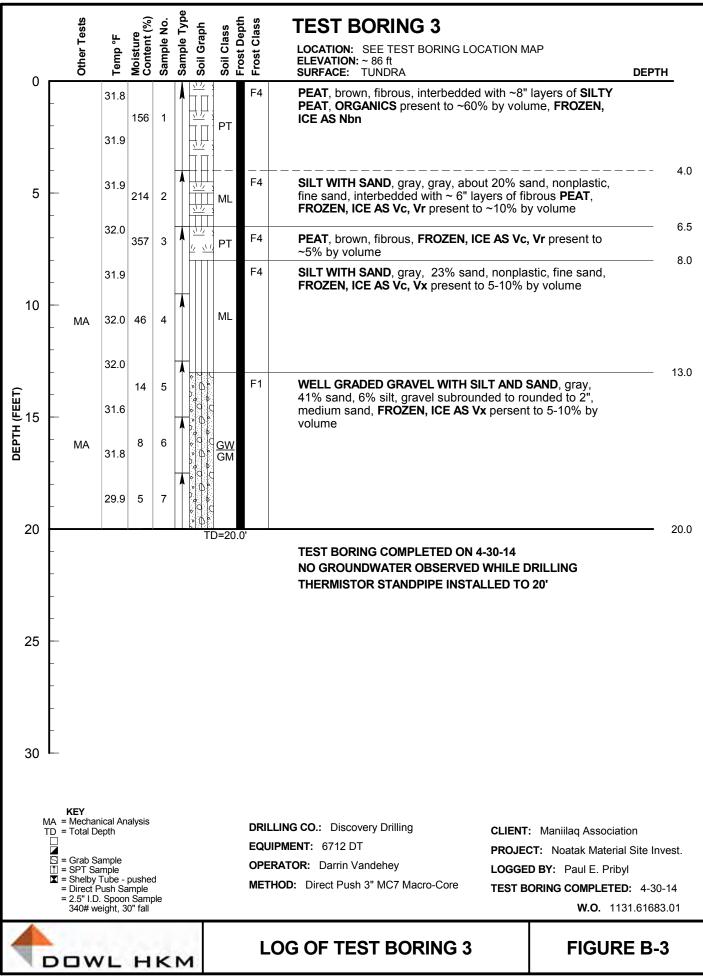
DOT&PF. (2014) Standard Specifications for Highway Construction.

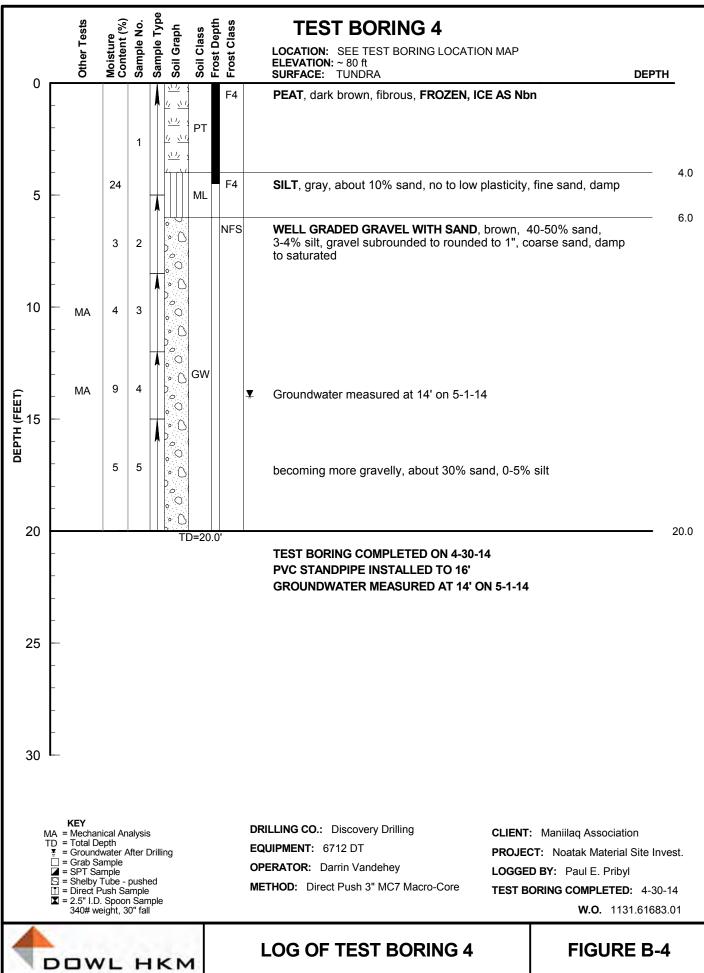
DOT&PF. (2014) Standard Specifications for Airport Construction

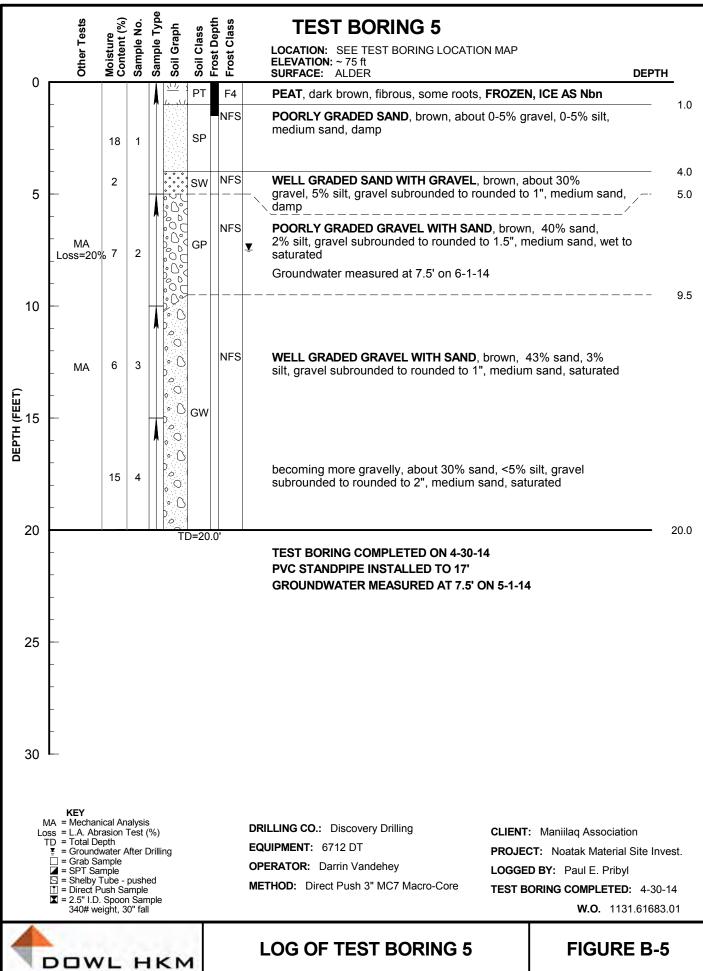
- Hartman, C.W. and Johnson, P.R. (1984). Environmental Atlas of Alaska. Second Edition. Revised. Fairbanks, Alaska: Institute of Water Resources, University of Alaska, Fairbanks, p. 95.
- Pewe, T.L. (1975). Quaternary Geology of Alaska, U.S. Geological Survey, Professional Paper 835. Washington, D.C.: United States Government Printing Office, p. 145, one map, two tables in pocket.
- Wahrhaftig, Clyde. (1965). *Physiographic Divisions of Alaska, US Geological Survey Professional Paper 482*. Washington, D.C.: United States Government Printing Office, p. 52, six plates.

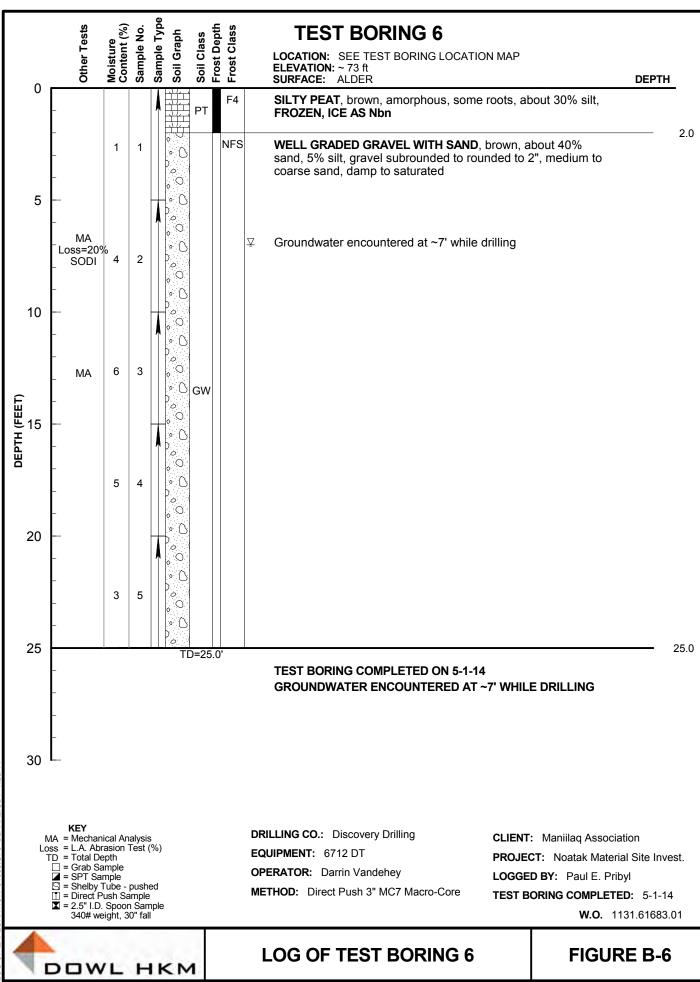

APPENDIX A

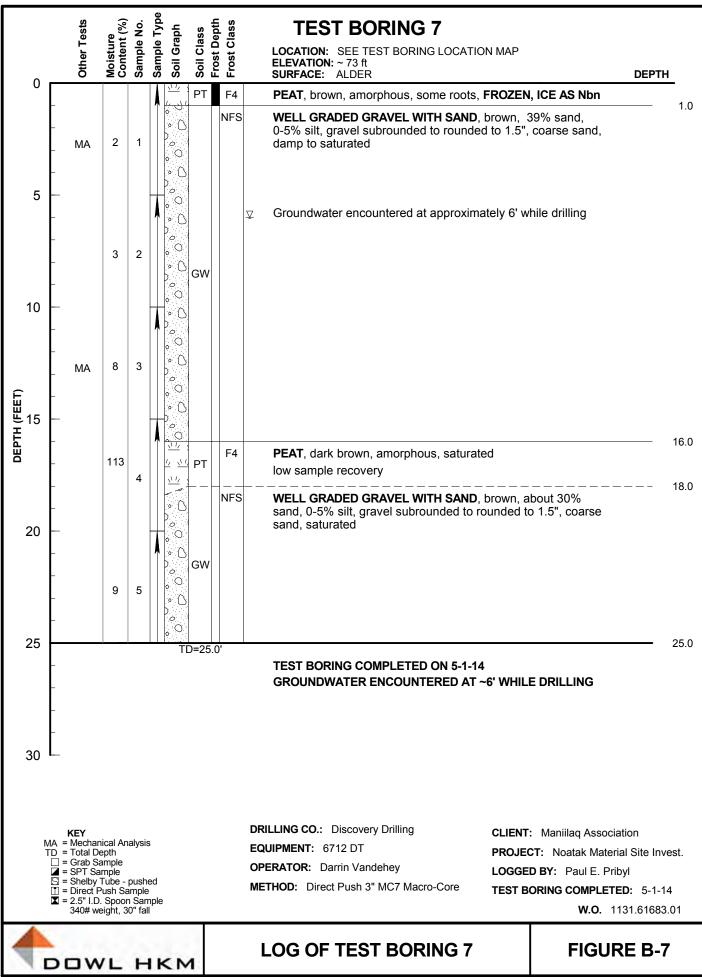

Test Boring Location Map

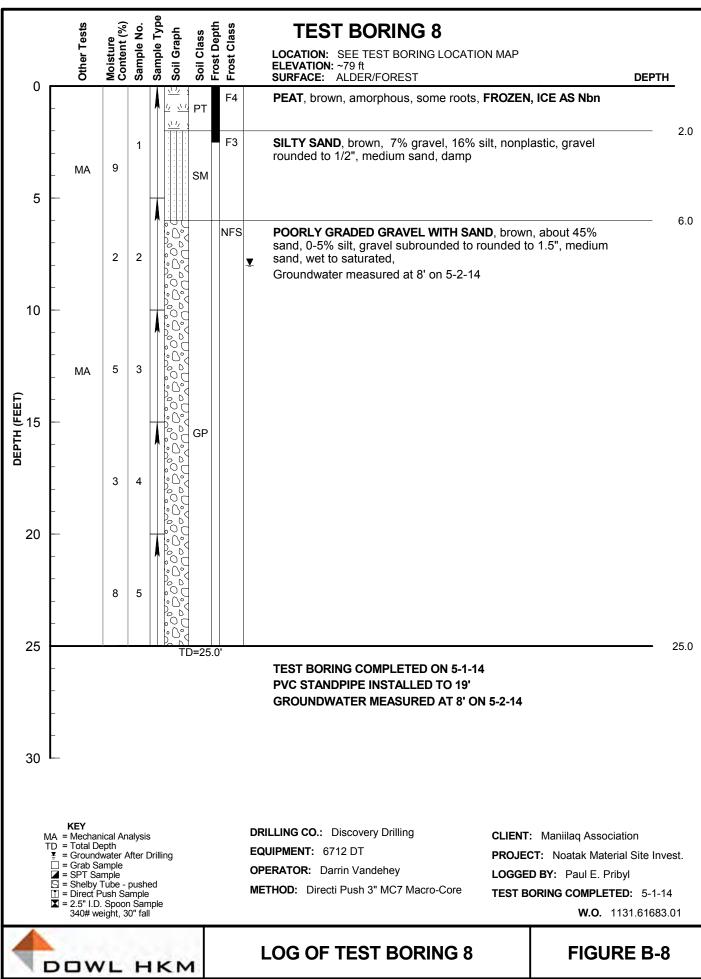


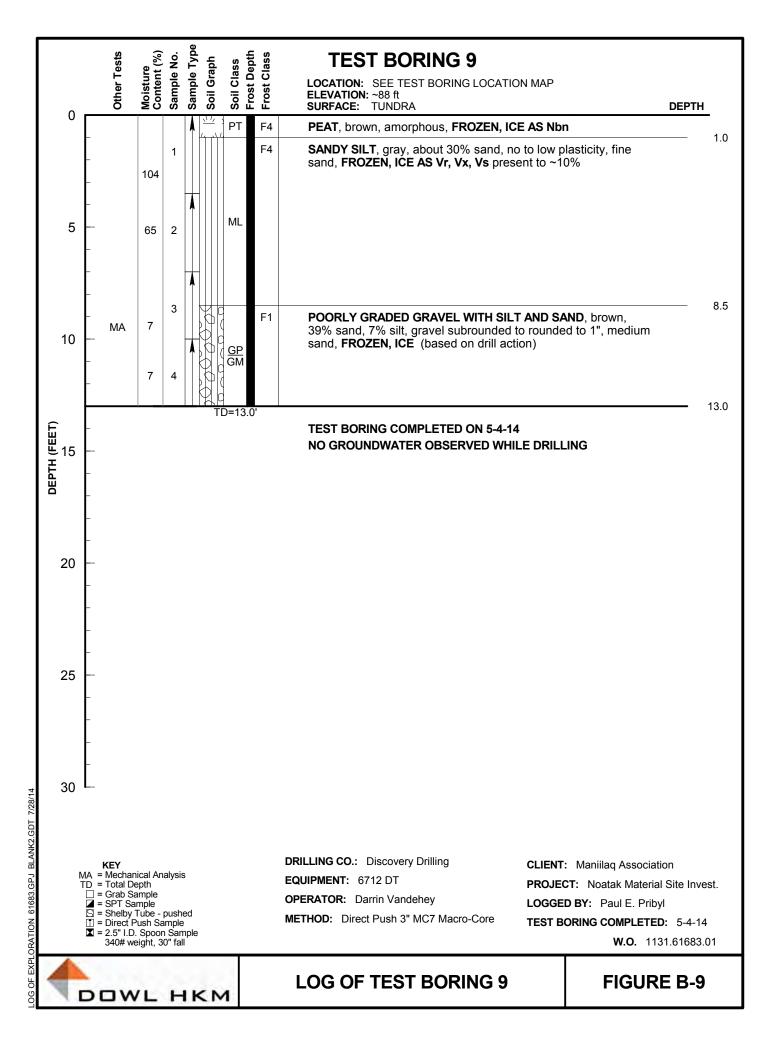

APPENDIX B

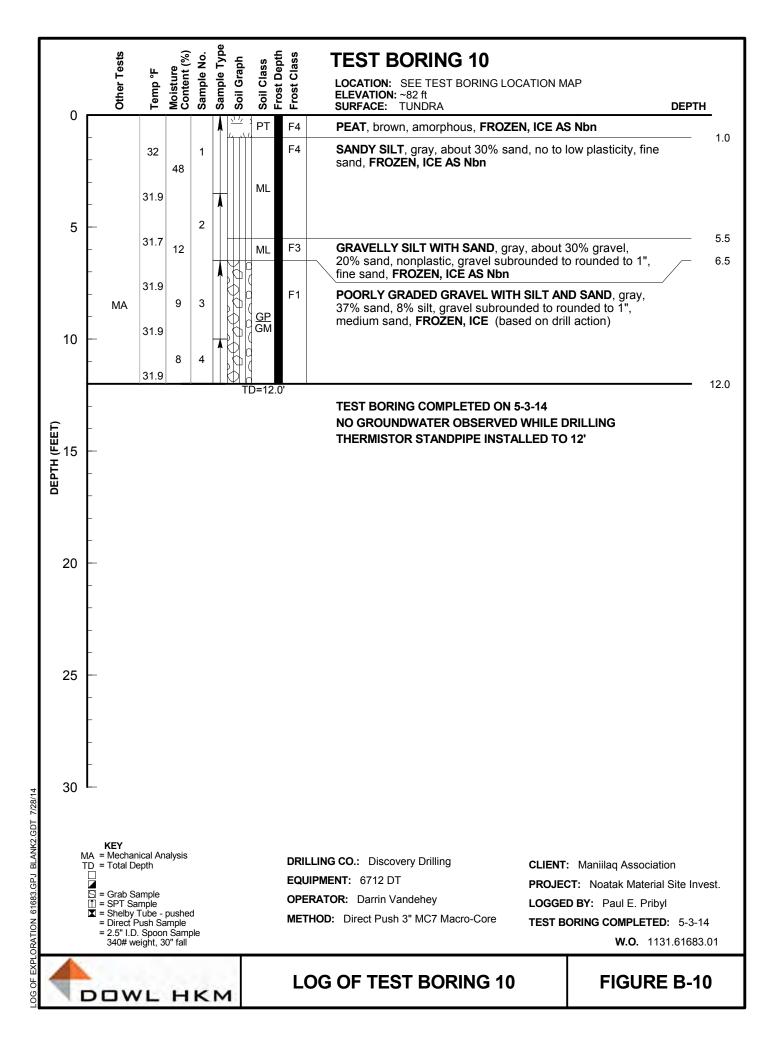

Test Boring Logs and Descriptive Guide

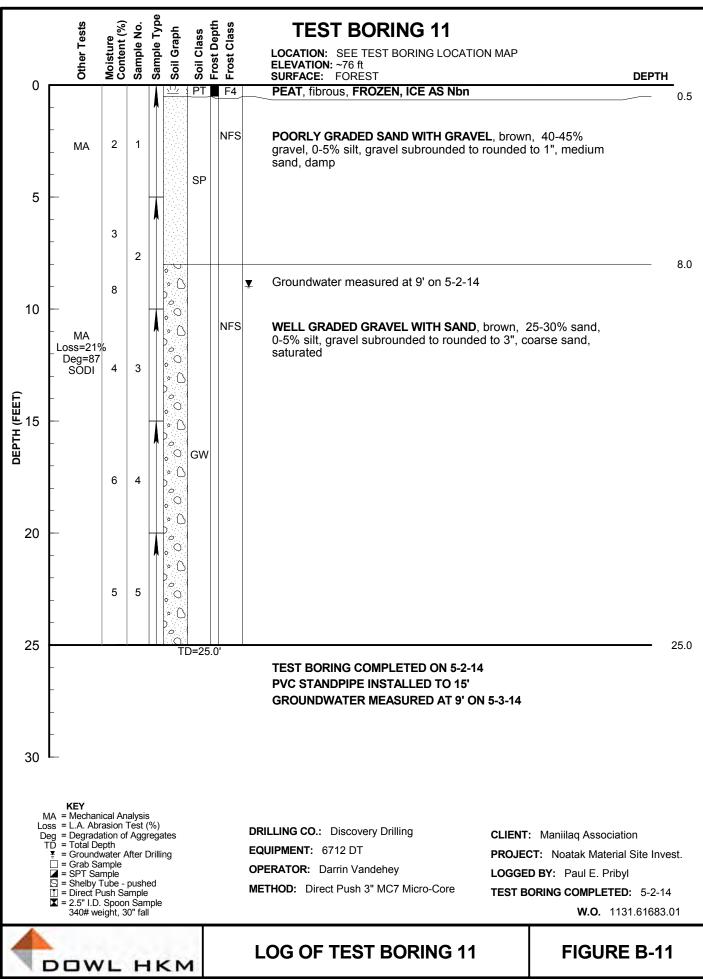


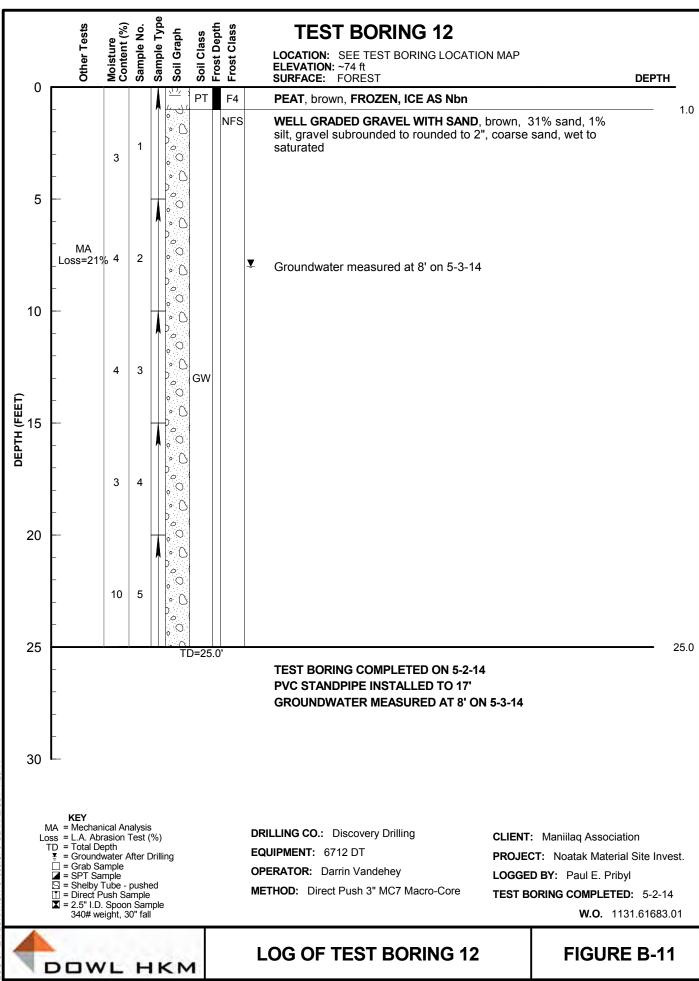


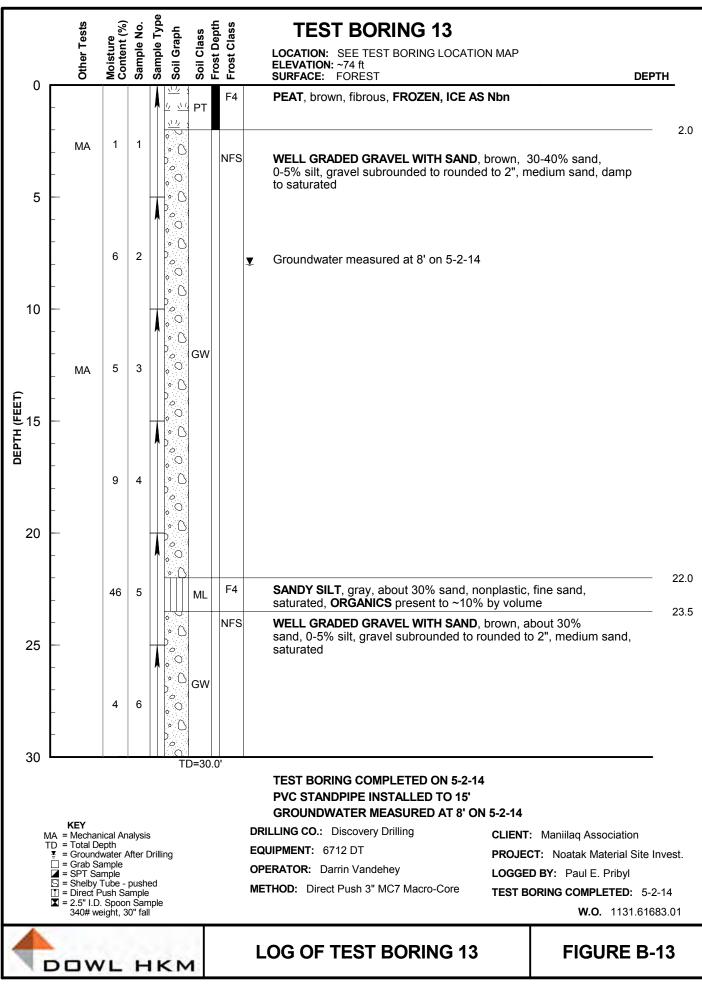


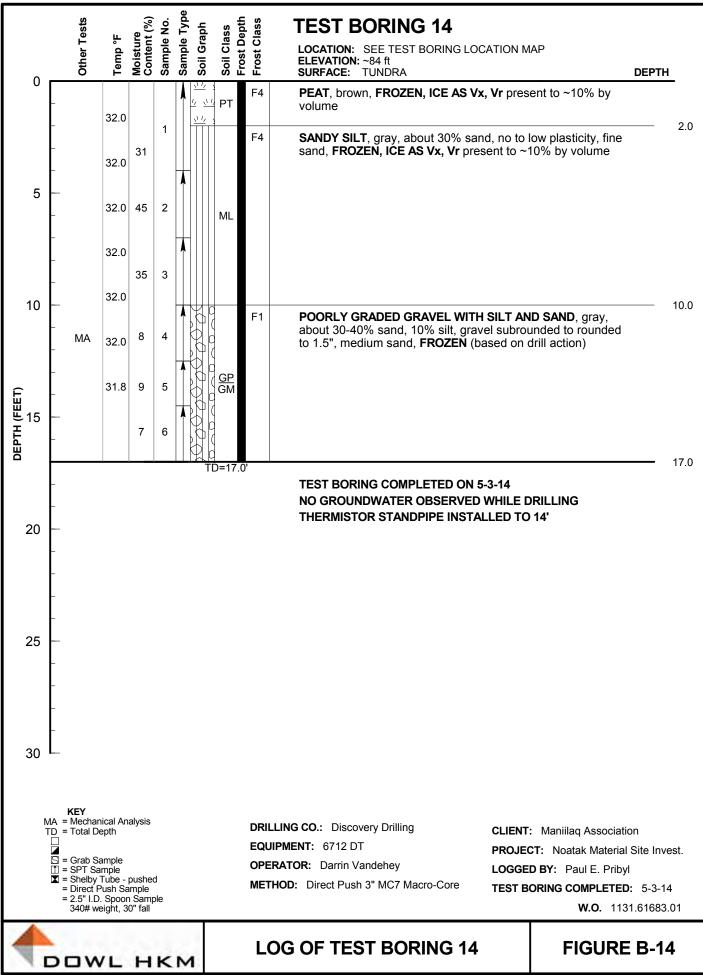


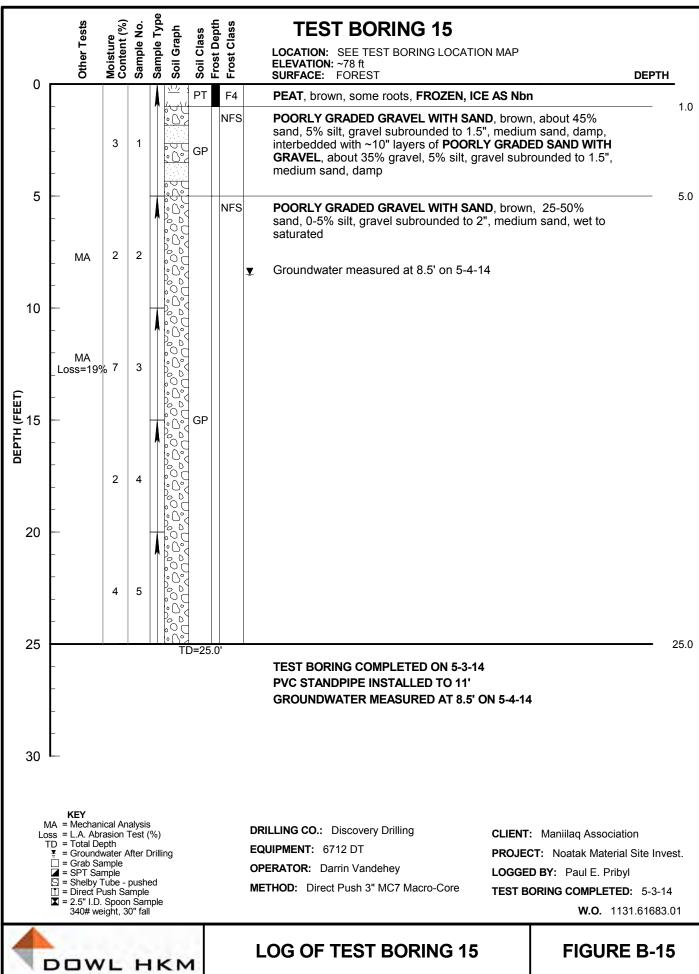







Ь





Ь

TEST BORING LOG - DESCRIPTIVE GUIDE

<u>Soil Descriptions</u> - The soil is classified visually in the field based on drill action, auger cuttings, and sample information. The recovered soil samples are classified visually again in the laboratory. The soil description on the boring log is based on an interpretation of the field and laboratory visual classifications, along with the results of laboratory particle-size distribution analyses and Atterberg Limits tests which may have been performed.

The <u>soil classification</u> is based on ASTM Designation D2487 "Standard Test Method for Classification of Soils for Engineering Purposes" and ASTM D2488 "Standard Practice for Description and Identification of Soils (Visual - Manual Procedure)". The <u>soil frost classification</u> is based on the system developed by the U.S. Army Corps of Engineers and is performed in accordance with the Departments of the Army and Air Force Publication TM 5-822-5 "Pavement Design for Roads, Streets, Walks, and Open Storage Areas". Outlines of these classification procedures are presented on the following pages.

The soil color is the subjective interpretation of the individual logging the test boring.

The <u>plasticity</u> of the minus No. 40 fraction of the soil is described and the fine-grained soils are identified from manual tests using the following table as a guide:

Soil Symbol	Dry Strength	Dilatancy	Toughness
ML	none to low	slow to rapid	low or thread cannot be formed
CL	medium to high	none to slow	medium
MH	low to medium	none to slow	low to medium
СН	high to very high	none	high

Plasticity Description	Criteria
Nonplastic	A 1/8" (3.2mm) thread cannot be rolled at any water content.
Low	A thread can barely be rolled and the lump cannot be formed when drier than the plastic limit.
Medium	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.

Laboratory Atterberg Limits tests usually are performed on a few of the plastic soils and results are reported on the test boring log. These laboratory tests are performed in accordance with ASTM D4318 "Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils."

The shape of the gravel particles is described based on this guide:

- Angular: particles have sharp edges and relatively plane sides with unpolished surfaces.
- Subangular: particles are similar to angular but have somewhat rounded edges.

- Subrounded: particles exhibit nearly plane sides but have well-rounded corners and edges.
 - Rounded: particles have smoothly curved sides and no edges.

The size of gravel and sand particles is described using this guide:

	Gravel	Sand
Coarse:	Passes 3" (75 mm) sieve, retained on 3/4" (19 mm) sieve	Passes No. 4 sieve, retained on No. 10 sieve
Medium:	N/A	Passes No. 10 sieve, retained on No. 40 sieve
Fine:	Passes 3/4" (19 mm) sieve, retained on No. 4 sieve	Passes No. 40 sieve, retained on No. 200 sieve
The soil m	adisture is described as:	

The soil moisture is described as:

dry:	powdery, dusty, no visible moisture.
damp:	enough moisture to affect the color of the soil; moist.
wet:	water in pores but not dripping; capillary zone above water table.
saturated:	dripping wet, contains significant free water, or sampled below water
	table.

The subjective estimate of the <u>density of coarse-grained soils</u> is based on the observed drill action and on drive sample data. The guide below is used for sands with minor amounts of fine gravel; however, blowcounts can be affected strongly by gravel content, thermal state, drilling procedures, condition of equipment and performance of the test.

Standard Penetration Resistance N (blows / foot) or N (blows / 300 mm)	Soil Density
0 - 5	Very loose
6 - 10	Loose
11 - 30	Medium dense
31 - 50	Dense
More than 50	Very dense

An estimate of the <u>consistency of fine-grained soils</u> is based on the observed drill action and on drive sample data. The guide below is used:

Standard Penetration Resistance N (blows / foot) or N (blows / 300 mm)	Soil Consistency
0 - 2	Very soft
3 - 4	Soft
5 - 8	Firm
9 - 15	Stiff
15 - 30	Very stiff
More than 30	Hard

<u>Soil Laver Boundaries</u> - Generally, there is a gradual transition from one soil type to another in a natural soil deposit, and it is difficult to determine accurately the boundaries of the soil layers.

- A *diagonal line* between soil layers on the graphic boring log indicates the general region of transition from one soil layer to another.
- A *dashed diagonal line* indicates the soil boundary was detected only by a change in the recovered samples and the actual boundary may be anywhere between the indicated sample depths.
- A *horizontal line* between soil layers indicates a relatively distinct transition between soil types was observed in the recovered samples and / or by a distinct change in drill action.

<u>Sample Interval</u> - The sample interval is shown graphically on the test boring log and generally is accurate to about 0.5 foot (0.15 meter).

Frost Depth and Soil Temperatures - If frozen ground is encountered during drilling, the interval of frozen soil is shown graphically on the test boring log. Generally, the temperature of a few soil samples is measured and shown on the boring log. These sample temperatures only give a qualitative indication of the *in situ* soil temperatures. The temperature of samples can be influenced significantly by the ambient air temperature and friction during drilling and sampling.

<u>Soil Moisture Content</u> - Generally, laboratory soil moisture content tests are performed on all recovered samples. Only about 30 grams of the minus No. 4 material typically is used for the moisture content test, so results reported on the log may not reflect accurately the *in situ* moisture content of gravelly soils.

<u>Soil Density</u> - The soil density shown on the test boring logs generally is determined by measuring the wet weight, moisture content, and physical dimensions of relatively undisturbed specimens.

<u>Ground Water</u> - The depth to ground water observed during drilling generally is shown on the test boring log. The depth to ground water observed during drilling can differ significantly from the depth to the actual ground water table, particularly in fine-grained soils. When more accurate water level measurements are desired, we typically install perforated PVC pipe in a boring to monitor the ground water level.

Penetration Resistance, N - Standard penetration tests (SPT) are performed in accordance with ASTM Designation D1586 "Standard Method for Penetration Test and Split-Barrel Sampling of Soils." A modified penetration test using a 2.5-inch (63.5 mm) I.D. split spoon driven with a 340-pound (154.2 kg) hammer falling 30 inches (.76 m) is performed to obtain larger samples, particularly in gravelly soils. The boring log key describes the graphic symbols used to differentiate between sample types.

<u>Undisturbed Samples</u> - Undisturbed Shelby tube samples are obtained in accordance with ASTM Designation D1587, "Standard Practice for Thin-Walled Tube Sampling of Soils." Generally, 3-inch (76.2 mm) O.D. Shelby tubes are used. Relatively undisturbed liner samples are obtained in accordance with ASTM Designation D3550, "Standard Practice for Ring-Lined Barrel Sampling of Soils," except a thick-walled cutting shoe is used. Typically, the sampler is driven using a 340-pound (154.2 kg) weight falling 30 inches (.76 m). The typical brass liner has an I.D. of 2.4 inches (91 mm).

<u>Grab Samples</u> - Grab samples are obtained from the auger flights. The sample depth and interval indicated on the test boring log should be considered a rough approximation. The grab samples may not be representative of *in situ* soils, particularly in layered soil deposits.

	CLASSIFICATI Based o	TION OF SOILS FOR ENGINEERING PU ASTM DESIGNATION: D2487 ed on the Unified Soil Classification System	CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES ASTM DESIGNATION: D2487 Based on the Unified Soil Classification System		Sneet 4 of 0
				S	Soil Classification
	Criteria for Assigning Group Svm	Criteria for Assigning Group Symbols and Group Names Using Laboratory $Tests^4$	onatory Tests ⁴	Group Symbol	Group Name ^B
Coarse-Grained Soils	Gravels	Clean Gravels	$Cu \ge 4$ and $1 \le Cc \le 3^E$	GW	Well-graded gravel ^F
More than 50% retained on #200 sicve	More than 50% of coarse fraction retained on #4 sieve	Less than 5% fines ^c	$Cu < 4$ and/or $1 > Cc > 3^E$	GP	Poorly graded gravel ^F
		Gravel with Fines	Fines classify as ML or MH	GM	Silty gravel F,G,H
		More than 12% fines ^C	Fines classify as CL or CH	GC	Clayey gravel ^{F, G, H}
	Sands	Clean Sands	$Cu \ge 6$ and $1 \le Cc \le 3^E$	SW	Well-graded sand ¹
	50% or more of coarse fraction	Less than 5% fines ^D	$Cu < 6$ and/or $1 > Cc > 3^E$	SP	Poorly graded sand ¹
	passes #4 sieve				
		Sands with Fines	Fines classify as ML or MH	SM	Silty Sand ^{G,H,I}
		More than 12% fines ^D	Fines classify as CL or CH	sc	Clayey Sand G.H.I
Fine-Grained Soils	Silts and Clays	Inorganic	PI > 7 and plots on or above "A" line '	CL	Lean Clay ^{K,L,M}
50% or more passes the	Liquid limit less than 50		PI < 4 or plots below "A" Line J	ML	$\operatorname{Silt}^{K,L,M}$
#200 sieve		Organic	Liquid limit - oven dried <0.75	ΟΓ	Organic Clay K,L.M.N
			Liquid limit - not dried	TO	Organic silt K,L,M,O
	Silts and Clays	Inorganic	PI plots on or above "A" line	CH	Fat clay ^{K,L,M}
	Liquid limit 50 or more		PI plots below "A" line	ΗМ	Elastic silt K,L,M
		Organic	Liquid limit - oven dried <0.75	НО	Organic clay ^{K,L,M,P}
			Liquid limit - not dried	НО	Organic clay ^{K,L,M,Q}
Highly organic soils		Primarily organic matter,	dark in color, and organic odor	ΡŢ	Pcat
A Based on the material passing the 3-in. (75nm) sieve.	. (75nm) sieve.	SP-SC poorly graded sand with clay	Μ	ıs <u>> </u> 30% plus No.	lf soil contains ≥ 30% phrs No. 200, predominantly gravel, add "gravelly" to
B If field sample contained cobbles or boulders, or both, add "with cobbles or	ш	င္ – ညစာ ငင္ – ႐ူးရာ္ရွ္	தாமை மாம்.		
boulders, or both" to group name.		-	N PI \geq 4 and pk	$PI \ge 4$ and plots on or above "A" line.	" line.
C Gravels with 5 to 12% fines require dual symbols:	Ľ.	If soil contains \geq 15% sand, add "with sand" to group name.	0	Pl < 4 or plots below "A" line.	
GW-GM well-graded gravel with silt	0	If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.	-SM. P	PI plots on or above "A" line.	
GW-GC well-graded gravel with clay	н.	If fines are organic, add "with organic fines" to group name.	to group name. Q PI plots below "A" line.	v "A" line.	
		the state of the s			

Sheet 4 of 6

whichever is predominant.

If soil contains \ge 30% plus No. 200, predominantly sand, add "sandy" to

K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel", Г

D Sands with 5 to 12% fines require dual symbols:

SW-SC well-graded sand with clay SP-SM poorly graded sand with silt

SW-SM well-graded sand with silt

GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay

-

If Atterberg Limits plot in hatched area, soil is a CL-ML, sifty clay. I If soil contains \geq 15% gravel, add "with gravel" to group name.

group name.

DESCRIPTI	ON OF FR	DZEN SI	DESCRIPTION OF FROZEN SOILS (Visual-Manual	-	Sneet 2 of 0 Procedure) ASTM Designation: D4083	DEFINITIONS
Part I Description of			Classify Soil Pha	1 2	se by ASTM D2487 or D2488	 ice coeffices on Particless - discernible layers of ice found on or below the larger soil particles in a frozen
Soil Phase						solmass.
		Group	Subgroup		Field Identification	2) loe Crystal - a very small individual ice particle visible
		Symbol	Description	Symbol	Identify by visual examination. To determine presence	
	Segregated ice is not	z	Poorly bonded or friable	JN	of excess ice, use procedures under Note 2 and hand magnifying lens as necessary. For soils not fully satu-	alone or in combination with other ice formations. 3) Clear los - ice trat is transcorent and contains only a
	visible by		No excess ice	Nb Nbn	rated, estimate degree of ice saturation; medium, low.	
	eye		Well-bonded		Note presence of crystals or of ice coatings around	4) Couch log - ice that is translucent or relatively
Description of			EXCess Ice	Nbe	larger particles.	opaque due to the contrant of air of tor other reasons, but which is essentially sound and
Frozen Soil			Individual ice crystal or	Vx	nase, record	impervious.
	Segregated ice is		Inclusions	ζ,	Location Structure	 Porus (g ice that contains numerous voids, usually interminected and usually resultion from
	visible by	>	Ice coatings on particles	2	SS	metting at air butbles or along oystal interfaces
	eye (ice 1-inch				Length Shape Snacing Hardness	from preserve of sait or other materials in the water, or from the freezing of saturated show. Though
	or less in		Random or irregularly	٧r	of arrangeme	
	thickness)		oriented ice formations			6) <u>Canded log</u> - ice that has rotted or otherwise formed into long columnar oxstats, very lossely
			Stratified or distinctly	Vs		
					Estimate volume of visible segregated ice present as	or less equidmensional crystals weakly bonded
			Uniformly distributed	٧u	percentage of total sample volume.	
			Ice	- 101	Deriversity of Alete 22 and the deminsting	8) <u>loe Lerses</u> - tenticular ice tormations in soil ocouring
			Ice with soil inclusions	ICE + Soil Type	Designate material as ICE (Note 3) and use descriptive terms as follows, usually one item from each group,	essentially parallel to each other, generally normal to the direction of heat loss, and commonly in
					icable:	
111 1-20					<u>ess</u>	9) loe Segrectation - the growth of ice within soil in
Description of	Ice (greater than 1-inch				SOFT CLOUDY	excess of the amount trait may be procuosed by the in-place conversion of the original void moisture to
Substantial Ice					ss, not individual	ice. Ice segregation occurs most often as distinct
	in thickness)	ICE	Ice without soil	ICE	crystals] CANDLED	lenses, layers, vents, and masses, commony, but not alwars: miented rormal to the direction of heat
			Inclusions		STRATIFIED	loss.
						10) <u>WetBonded</u> - a condition in which the soil particles are strinorly held threather by the line so that the
					(Examples): COLORLESS <u>Admixtures</u> (Examples)	frozenses retriety high resistance to
					BLUE SILT INCLUSIONS	11) <u>Poort/Bonded</u> - a condition in which the sol carticles are weakly held troether by the lice so that
						the fruzen soil has poor resistance to dripping and
Note 1: Frozen s	soils in the N group	may, on dos	se examination, indicate presen	ce of ice within the	Frozen soils in the N group may, on dose examination, indicate presence of ice within the voids of the material by crystalline reflections or by a sheen on	
	l or trimmed surfac	xes. The imp	ression received by the unaided	deye, however, i	fractured or trimmed surfaces. The impression received by the unaided eye, however, is that none of the frozen water occupies space in excess of the	12) <u>Inaw serve</u> - the organisatics of incentions that, upon thewing, do not show loss of strength in
	voids in the soil. Th	ne opposite is	original voids in the soil. The opposite is true of frozen soils in the V group.	ср. 		comparison to normal, long-time thaved values nor
NOUE Z: VVIIETVE Smalliar	istial meuroos mat allowing it in met	y de Inadequi and observir	when visual memors may be manequele, a simple liefu lest to alu in evaluation of the volume of excess ro- small lar allowing if to methand observing the grantity of supernated water as a percentation of hish volume	valualion of the v rationals a normen	when would internots in the interventione, a simple text its to durin evaluation of the volume of excessive can be made by paraligison te nucleus with a small far allowing the median gravity of superior symmetry of symmetry of symmetry of symmetry of superior symmetr	produce definental selfement.

þ <u>ና</u> 3 wither invester interview one independence, a surprementation of an interview of the word for excess to car small jar, allowing it to melt, and observing the quaritity of supernatant water as a percentage of total volume. Where special forms of ice such as hoarfrost can be distinguished, more explicit description should be given. Observer should be careful to avoid being misked by surface scratches or frost coafing on the ice.

Note 3: Note 4:

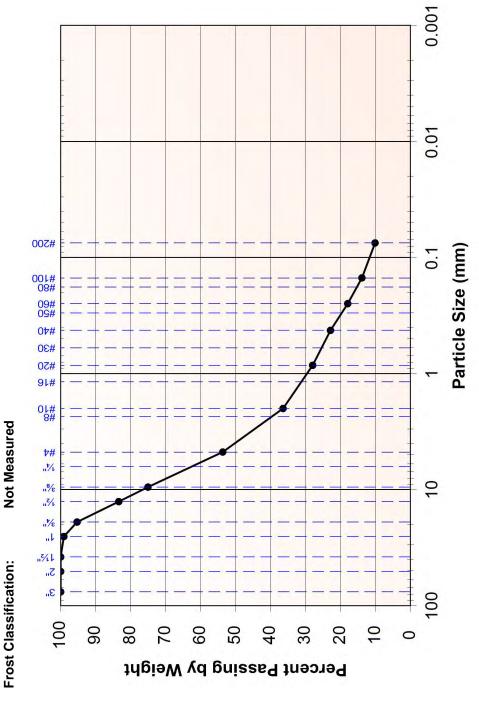
FROST DESIGN SOIL CLASSIFICATION¹

Frost ² Group	Kind of Soil	Percentage	Typical Soil Types Under
1		Finer than 0.02	Unified Soil Classification
		mm by Weight	System
NFS ³	(a) Gravels	0 to 1.5	GW and GP
	Crushed stone		
	Crushed rock		
	(b) Sands	0 to 3	SW and SP
1			
PFS ⁴ (MOA NFS)	(a) Gravels	1.5 to 3	GW and GP
	Crushed stone Crushed rock		
	Crusileu Tock		
(MOA F2)	(b) Sands	3 to 10	SW and SP
<pre></pre>			
S1 (MOA F1)	Gravelly soils	3 to 6	GW, GP, GW-GM, and GP-GM
S2 (MOA F2)	Sandy soils	3 to 6	SW, SP, SW-SM, and SP-SM
		<u>()</u> 10	
F1	Gravelly soils	6 to 10	GM, GW-GM, and GP-GM
F2	(a) Gravelly soils	10 to 20	GM, GW-GM, and GP-GM
	(b) Sands	6 to 15	SM, SW-SM, and SP-SM
F3	(a) Gravelly soils	Over 20	GM and GC
	(b) Sands, except very	Over 15	SM and SC
	fine silty sands		
	(c) Clays, P1>12		CL and CH
	(0) Olugo, 11712		
F4	(a) All silts		ML and MH
	(b) Very fine silty sands	Over 15	SM
			~~~~
	(c) Clays, P1<12		CL and CL-ML
	(d) Varved clays and		CL and ML
	other fine-grained,		CL, ML, and SM
	banded sediments		CL, CH, and ML
			CL, CH, ML and SM

1

 ¹ Departments of the Army and Air Force Publication TM 5-822-5/AFM 88-7, "Pavement Design for Roads, Streets, Walks, and Open Storage Areas", Table 18-2.
 ² Corps of Engineers Frost groups directly correspond to the Municipality of Anchorage soil frost classification groups,

except as noted. ³ Non Frost-Susceptible. ⁴ Possibly frost-susceptible, but requires laboratory test to determine frost design soil classification.


#### **APPENDIX C**

#### Laboratory Test Results



# Location: Test Boring 02 Sample 4 Depth 10'-13'

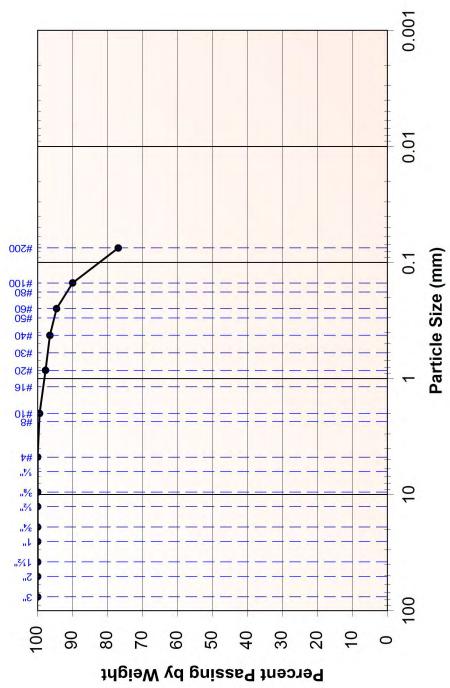
Engineering Classification: Well Graded Gravel with Silt and Sand, GW-GM



**Particle Size Distribution** 

Reported 6/5/2014		Lab Number 2014-439		AS1M D422
-------------------	--	---------------------	--	-----------

3" 2" 1½"	100%	-
	0,001	
	100%	
	100%	
	%66	
	95%	
	83%	
	75%	
	54%	
Weight	Total Weight of Sample 7167g	67g
	36%	
	28%	
	23%	
	18%	
#100	14%	
#200	10.1%	
Weight	Total Weight of Fine Fraction 326.49	ion 326.4g




> Location: Test Boring 03 Sample 5 Depth 9.5'-12.5'

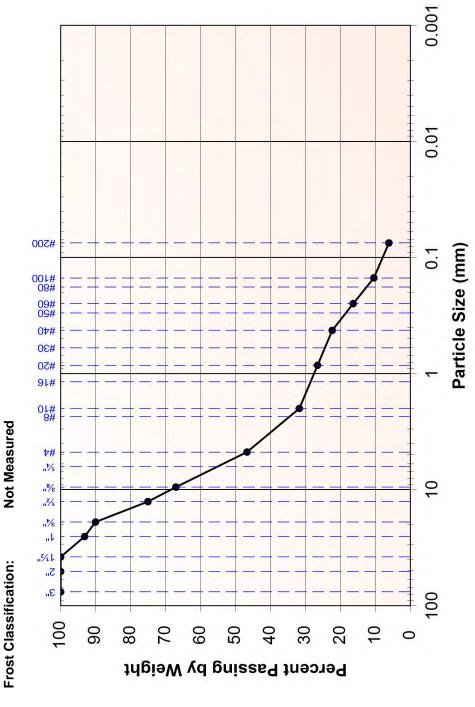


П 4

Frost Classification:



**Particle Size Distribution** 


ASTM D422 Lab Number 2014-440 Received 5/9/2014 Reported 6/5/2014	
----------------------------------------------------------------------------	--

3" 100% 2" 100% 11/2" 100% 7" 100% %" 100% %" 100% #4 100% #10 99% #10 99% #10 96% #10 96% #10 96% #100 90% Total Weight of Fine Fraction 305.4g	0170	Passing Sp	specification
100% 100% 100% 100% 100% 100% 99% 98% 96% 96% 95% 95% 95% 77.0% Weight of Fine Fraction 305.4g		100%	
100% 100% 100% 100% 100% 99% 98% 96% 96% 95% 95% 0 77.0% Weight of Fine Fraction 305.4g		100%	
100% 100% 100% 100% 100% 99% 96% 96% 95% 95% 0 77.0% Weight of Fine Fraction 305.4g		100%	
100% 100% 100% Weight of Sample 1442.3g 99% 96% 96% 95% 95% 0 77.0% Weight of Fine Fraction 305.4g		100%	
100% 100% 100% Weight of Sample 1442.3g 99% 96% 96% 95% 95% 0 77.0% Weight of Fine Fraction 305.4g		100%	
100% 100% Weight of Sample 1442.3g 99% 96% 96% 95% 95% 0 77.0% Weight of Fine Fraction 305.4g		100%	
100% Weight of Sample 1442.3g 99% 96% 95% 95% 0 77.0% Weight of Fine Fraction 305.4g		100%	
Weight of Sample 1442.3g 99% 96% 95% 95% 0 77.0% Weight of Fine Fraction 305.4g		100%	
99% 98% 96% 95% 90% Veight of Fine Fraction 305.4g	Weigh	ht of Sample 1442.3g	D
98% 96% 95% 90% Weight of Fine Fraction 305.4g		%66	
96% 95% 90% Veight of Fine Fraction 305.4g		98%	
95% 90% 77.0% Weight of Fine Fraction 305.4g		96%	
0 90% 77.0% Weight of Fine Fraction 305.4g		95%	
Veight of Fine Fraction 305.4g	_	%06	
Weight of Fine Fraction 305.4g	_	77.0%	
	Weigh	nt of Fine Fraction 30	<b>35.4g</b>



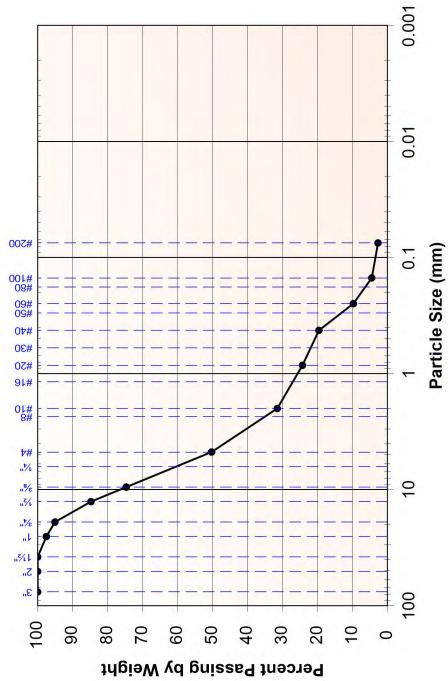
> Location: Test Boring 03 Sample 6 Depth 13'-15'

Engineering Classification: Well Graded Gravel with Silt and Sand, GW-GM



**Particle Size Distribution** 

AS I M D422	r 2014-441	5/9/2014	6/5/2014
	Lab Number 2014-441	Received	Reported


Size	Passing	Specification
3ª	100%	
2"	100%	
11/2"	100%	
÷-	93%	
3/"	%06	
1⁄2"	75%	
3%"	67%	
#4	47%	
Total Weiç	Total Weight of Sample 3542.7g	542.7g
#10	32%	
#20	27%	
#40	22%	
09#	16%	
#100	10%	
#200	6.2%	
Total Weiç	Total Weight of Fine Fraction 392.79	tion 392.7g



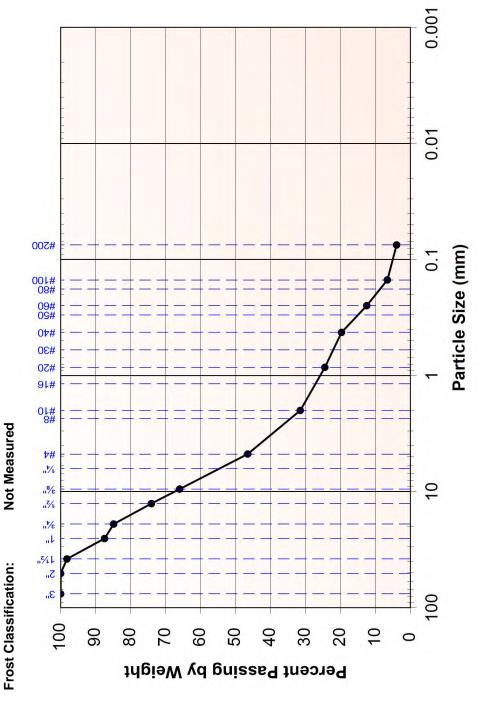
# Location: Test Boring 04 Sample 3 Depth 8.5'-12'

Engineering Classification: Well Graded Gravel with Sand, GW

Frost Classification: NFS



**Particle Size Distribution** 


ASTM D422	2014-442	5/9/2014	6/5/2014
A	Lab Number	Received	Reported

Size	Passing	Specification
3"	100%	
2"	100%	
11⁄2"	100%	
	98%	
34"	95%	
1⁄2"	85%	
3%"	75%	
#4	50%	
Fotal Weig	Total Weight of Sample 5304g	304g
#10	31%	
#20	24%	
#40	20%	
#60	10%	
#100	4%	
#200	2.7%	
rotal Weiç	Total Weight of Fine Fraction 397.89	tion 397.8g



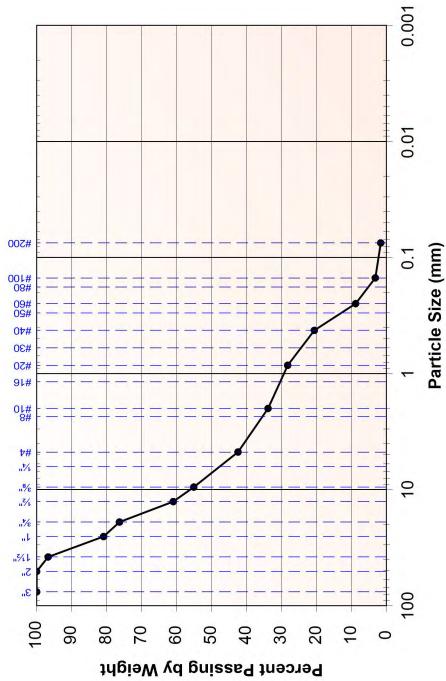
> Location: Test Boring 04 Sample 4 Depth 12'-15'

Engineering Classification: Well Graded Gravel with Sand, GW



**Particle Size Distribution** 

	Passing	Specification
	100%	
	100%	
	98%	
	87%	
	85%	
	74%	
	66%	
	47%	
gh	Total Weight of Sample 5710.0g	10.0g
	31%	
	24%	
	20%	
	13%	
	7%	
	4.0%	
ų	Total Weight of Fine Fraction 401.6g	on 401.6g




# Location: Test Boring 05 Sample 3 Depth 5'-8.5'

Engineering Classification: Poorly Graded Gravel with Sand, GP

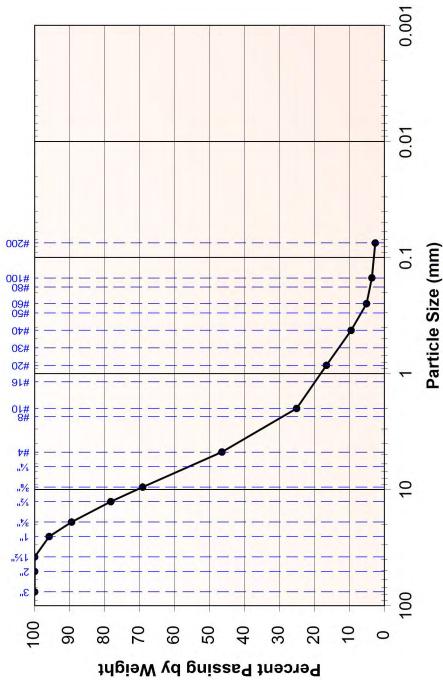
NFS

Frost Classification:



**Particle Size Distribution** 

ASTM D422	<b>Number</b> 2014-444	sived 5/9/2014	orted 6/5/2014
	Lab Number	Received	Reported


tion																
Specification									3g							n 341.6g
Passing	100%	100%	67%	81%	76%	61%	55%	42%	Total Weight of Sample 6033g	34%	28%	21%	%6	3%	1.6%	Total Weight of Fine Fraction 341.6g
Size	3"	2"	11⁄2"		3⁄4"	1/2"	3%"	#4	Total Weight	#10	#20	#40	09#	#100	#200	Total Weight



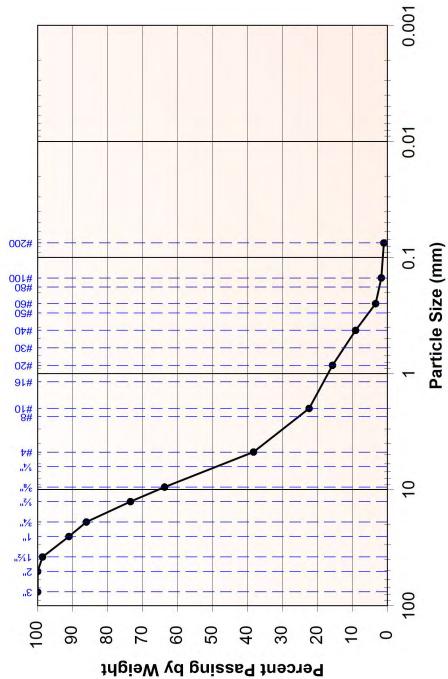
> Location: Test Boring 05 Sample 4 Depth 10'-13'

Engineering Classification: Well Graded Gravel with Sand, GW

Frost Classification: NFS



**Particle Size Distribution** 


ASTM D422	<b>Jumber</b> 2014-445	ived 5/9/2014	rted 6/5/2014
	Lab Number	Received	Reported



> Location: Test Boring 06 Sample 2 Depth 5'-9'

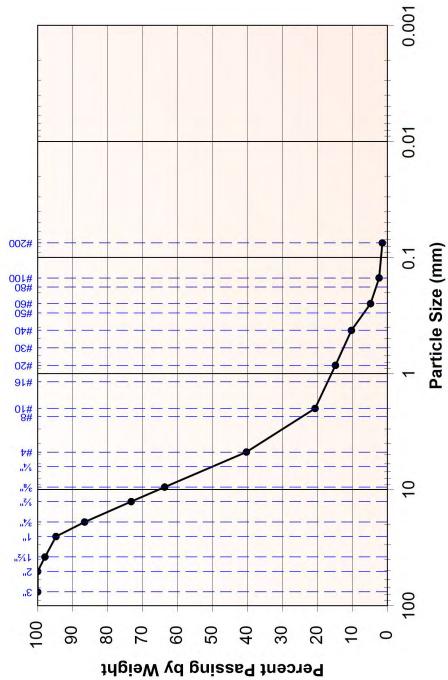
Engineering Classification: Well Graded Gravel with Sand, GW

Frost Classification: NFS



**Particle Size Distribution** 

ASTM D422           Lab Number         2014-446           Received         5/9/2014           Reported         6/5/2014	ASTM D422 2014-446 5/9/2014 6/5/2014
-------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------


Size	Passing	Specification
3"	100%	
2"	100%	
11⁄2"	%66	
	91%	
3,4"	86%	
1⁄2"	73%	
3%"	64%	
#4	38%	
otal Wei	Total Weight of Sample 6737g	737g
#10	22%	
#20	16%	
#40	%6	
#60	3%	
#100	2%	
#200	1.0%	
otal Wei	Total Weight of Fine Fraction 353g	ion 353g



> Location: Test Boring 06 Sample 3 Depth 10'-12'

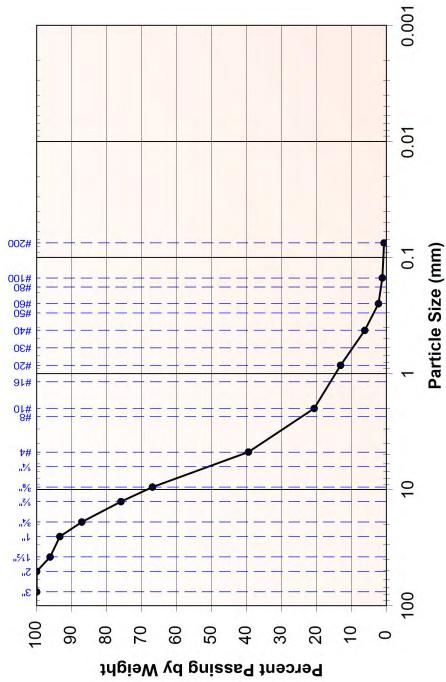
Engineering Classification: Well Graded Gravel with Sand, GW

Frost Classification: NFS



**Particle Size Distribution** 

Lab Number Received Reported
------------------------------------


Passing Specification	100%	100%	98%	95%	87%	73%	64%	40%	f Sample 5147g	21%	15%	10%	5%	2%	1.5%	Total Weight of Fine Fraction 569.7g	
Size Passir	3" 100%	2" 100%	11/2" 989	1" 95%	34" 879	1/2" 739	3%" 649	#4 40%	Total Weight of Sample 5147g	#10 219	#20 159	#40 10%	#60 59	#100 29	#200 1.59	Total Weight of Fine	



> Location: Test Boring 07 Sample 1 Depth 1'-4'

Engineering Classification: Well Graded Gravel with Sand, GW

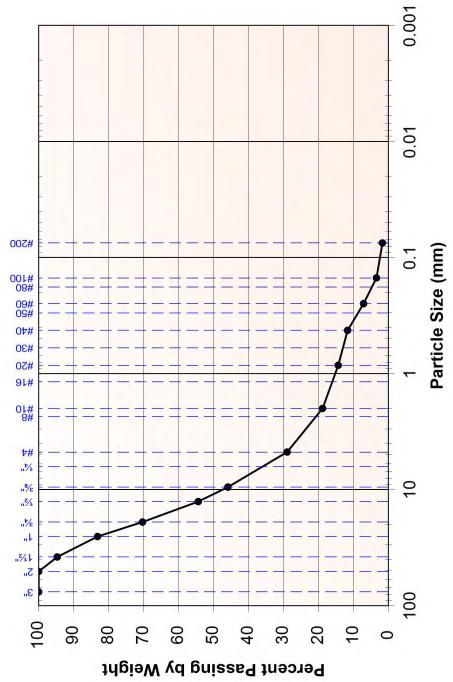
Frost Classification: NFS



**Particle Size Distribution** 

ASTM D422	. 2014-448	5/19/2014	6/5/2014
	Lab Number	Received	Reported

ng Specification	9	9	,0	9	,0	,0	,0	0	ple 3766g	9	9	9	9	0	9	Fraction 311.8g				
Size Passing	3" 100%	2" 100%	11⁄2" 96%	1" 93%	3⁄4" 87%	1/2" 76%	3 _% " 67%	#4 39%	Total Weight of Sample 3766g	#10 21%	#20 13%	#40 6%	#60 2%	#100 1%	#200 0.7%	Total Weight of Fine Fraction 311.8g				



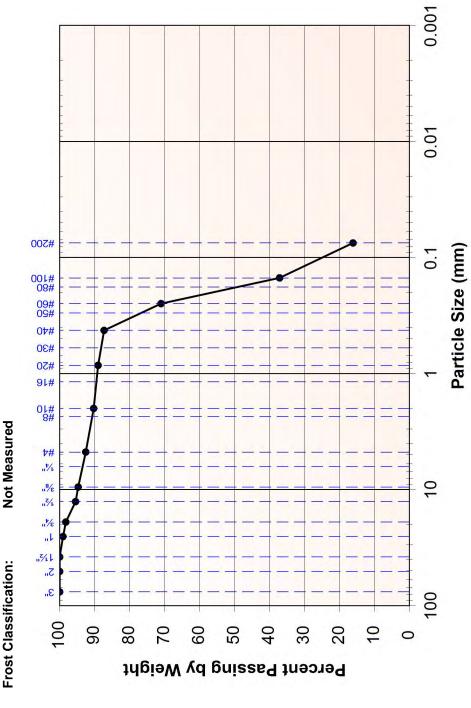

# Location: Test Boring 07 Sample 3 Depth 10'-13'

# Engineering Classification: Poorly Graded Gravel with Sand, GP

NFS

Frost Classification:




**Particle Size Distribution** 

3" 100% 2" 100% 112" 95% 112" 95% 70% %" 70% %" 70% %" 29% #10 19% #10 19% #10 19% #10 12% #10 3% #200 1.7% #200 1.7% Total Weight of Fine Fraction 329.8g
100% 95% 83% 54% 54% 46% 29% 19% 19% 12% 7% 33% Veight of Fine Fraction 32
95% 83% 70% 54% 46% 29% 19% 14% 12% 3% 3% 1.7% 3% Veight of Fine Fraction 32
83% 54% 54% 46% 29% 19% 112% 12% 3% 3% 1.7% Veight of Fine Fraction 32
70% 54% 46% 29% 19% 19% 12% 7% 3% 1.7% Veight of Fine Fraction 32
54% 46% 29% 19% 14% 12% 3% 3% 1.7% Veight of Fine Fraction 32
46% 29% /eight of Sample 6416g 19% 12% 7% 3% 1.7% Veight of Fine Fraction 32
29% /eight of Sample 6416g 19% 12% 7% 33% /eight of Fine Fraction 32
/eight of Sample 6416g 19% 14% 7% 3% 1.7% /eight of Fine Fraction 32
19% 14% 12% 3% 1.7% Veight of Fine Fraction 32
14% 12% 7% 1.7% Veight of Fine Fraction 32
12% 7% 3% 1.7% Veight of Fine Fraction 32
7% 3% 1.7% Veight of Fine Fraction 32
3% 1.7% /eight of Fine Fraction 32
1.7% /eight of Fine Fraction 32
/eight of Fine Fraction 32



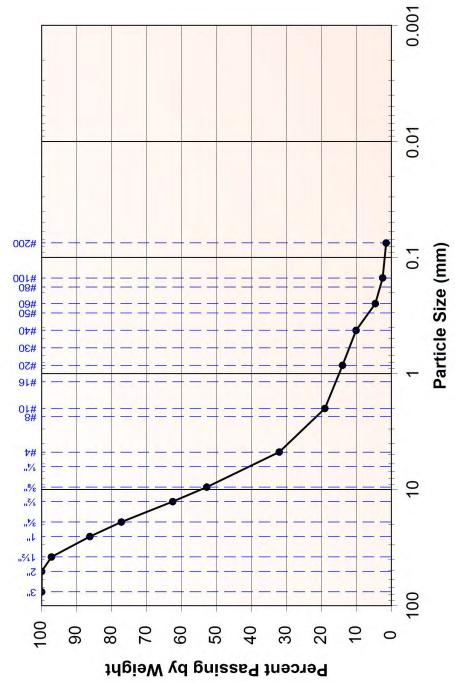
# Location: Test Boring 08

Sample 1 Depth 2'-5' Engineering Classification: Silty Sand, SM



**Particle Size Distribution** 

ASTM D422	2014-450	5/9/2014	6/5/2014
AS	Lab Number	Received	Reported


	Passing Specification	cation
	100%	
	100%	
	100%	
	%66	
	98%	
	95%	
	95%	
	93%	
0	Total Weight of Sample 2255.6g	
	80%	
	89%	
	87%	
	71%	
	37%	
	16.1%	
	Total Weight of Fine Fraction 301.8g	



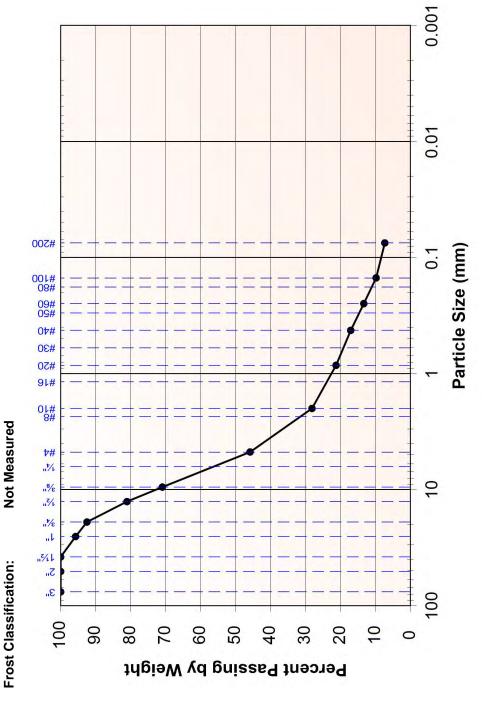
# Location: Test Boring 08 Sample 3 Depth 10'-15'

Engineering Classification: Poorly Graded Gravel with Sand, GP

Frost Classification: NFS



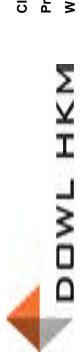
**Particle Size Distribution** 


ASTM D422	Lab Number 2014-451	<b>eived</b> 5/9/2014	orted 6/5/2014	
	Lab Nu	Received	Reported	

Size	Passing	Specification
	100%	
	100%	
	67%	
	86%	
	77%	
	63%	
	53%	
	32%	
Wei	Total Weight of Sample 4157.8g	157.8g
	19%	
	14%	
	10%	
	5%	
#100	3%	
#200	1.5%	
Wei	Total Weight of Fine Fraction 381.6g	tion 381.6g

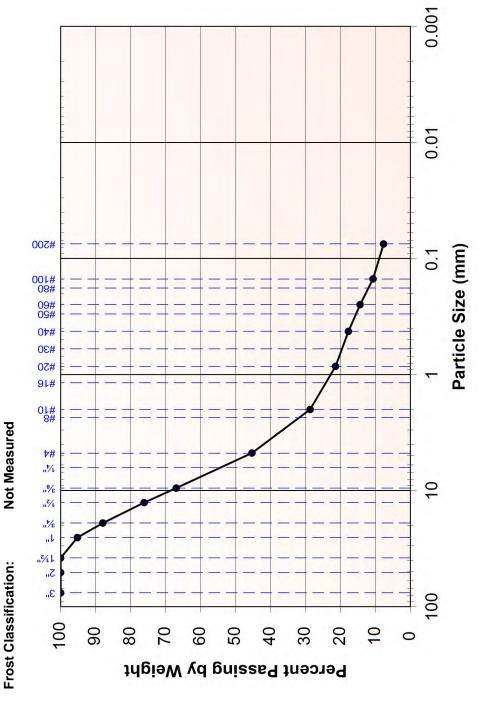


# Location: Test Boring 09 Sample 2 Depth 8.5'-10'


Engineering Classification: Poorly Graded Gravel with Silt and Sand, GP-GM



**Particle Size Distribution** 


ASTM D422	<b>nber</b> 2014-452	<b>d</b> 5/9/2014	<b>d</b> 6/5/2014
	Lab Number	Received	Reported

3" 100% 2" 100% 11% 100% 11% 96% %" 71% %" 81% %" 71% #4 46% for 106g #10 28% #10 28% #10 28% #10 10% #20 21% #10 10% #20 7.3% Total Weight of Fine Fraction 477.6g	Size	Passing	Specification
2" 100% 96% 96% 96% 92% 81% 71% 71% al Weight of Sample 7106g 0 28% 0 28% 0 13% 0 13% 0 13% 0 7.3% al Weight of Fine Fraction 477.6g		100%	
<ul> <li>2" 100%</li> <li>96%</li> <li>92%</li> <li>81%</li> <li>71%</li> <li>71%</li> <li>71%</li> <li>28%</li> <li>28%</li> <li>21%</li> <li>17%</li> <li>0</li> <li>13%</li> <li>0</li> <li>13%</li> <li>0</li> <li>13%</li> <li>10%</li> <li>13%</li> <li>10%</li> <li>11%</li> <l< td=""><td></td><td>100%</td><td></td></l<></ul>		100%	
96% 92% 81% 81% 71% al Weight of Sample 7106g 0 28% 0 21% 0 17% 0 17% 0 10% al Weight of Fine Fraction 477.6g	- - -	100%	
<ul> <li>92%</li> <li>81%</li> <li>71%</li> <li>71%</li> <li>46%</li> <li>28%</li> <li>28%</li> <li>28%</li> <li>21%</li> <li>17%</li> <li>117%</li> <li>111%</li> <li>111</li></ul>		96%	
<ul> <li>81%</li> <li>71%</li> <li>71%</li> <li>146%</li> <li>146%</li> <li>28%</li> <li>21%</li> <li>21%</li> <li>17%</li> <li>117%</li> <li>118</li> <li>118<td></td><td>92%</td><td></td></li></ul>		92%	
71%           46%           all Weight of Sample 7106g           0         28%           17%           17%           17%           17%           10           17%           10           17%           10           13%           10%           11%           13%           13%           10           13%           10           13%           10%           110%           12           10           110%           12	-	81%	
46%       al Weight of Sample 7106g       0     28%       17%       17%       17%       17%       17%       17%       17%       17%       21%       17%       17%       17%       21%       17%       17%       17%       17%       17%       17%       17%       17%       17%       17%       17%       17%       13%       10%       10%       10%       11%       11%       12%       13%       10%       11%       11%       11%       11%       11%       11%       12%       13%       14%       15%       16%       17%       17%       18%       19%       10%       10%       11%       11%       11%       11%       11%       11%       11%       11%       11%	-	71%	
tal Weight of Sample 7106g 28% 20 21% 17% 10% 13% 10% 13% 10% 13% 10% 13% 10% 13% 10% 13% 10% 13% 10% 13% 10% 13% 10% 13% 10% 10% 10% 10% 10% 10% 10% 10	_	46%	
0 28% 21% 17% 17% 17% 10% 10% 200 7.3% 20 7.3% 21% 200 Fine Fraction 477.6g	tal Wei	ght of Sample 71	106g
20 21% 40 17% 50 13% 100 10% 200 7.3% tal Weight of Fine Fraction 477.6g	0	28%	
10 17% 50 13% 100 10% 200 7.3% tal Weight of Fine Fraction 477.6g	0	21%	
50 13% 100 10% 200 7.3% tal Weight of Fine Fraction 477.6g	01	17%	
10% 10% 200 7.3% tal Weight of Fine Fraction 477.6g	00	13%	
tal Weight of Fine Fraction 477.6g	00	10%	
tal Weight of Fine Fraction 477.6g	500	7.3%	
	tal Wei	ght of Fine Fract	tion 477.6g



# Location: Test Boring 10 Sample 3 Depth 6.5'-10'

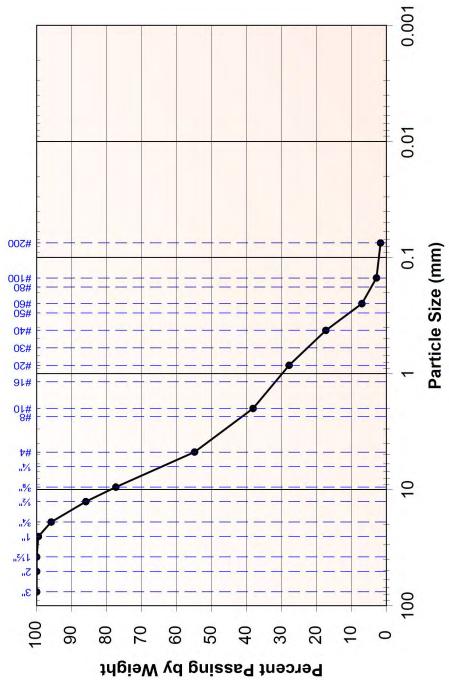
Engineering Classification: Poorly Graded Gravel with Silt and Sand, GP-GM



**Particle Size Distribution** 

AS1M D422	er 2014-453	5/9/2014	6/5/2014
	Lab Number	Received	Reported

3" 2"		
2"	100%	
41/1	100%	
/2	100%	
÷-	95%	
3⁄4"	88%	
1/2"	76%	
3⁄8"	67%	
#4	45%	
Total Weigł	Total Weight of Sample 5110g	110g
#10	29%	
#20	21%	
#40	18%	
#60	14%	
#100	11%	
#200	7.7%	
Total Weigl	Total Weight of Fine Fraction 355.89	ion 355.8g




#### Location: Test Boring 11 Sample 1 Depth 0.5'-5'

Engineering Classification: Poorly Graded Sand with Gravel, SP

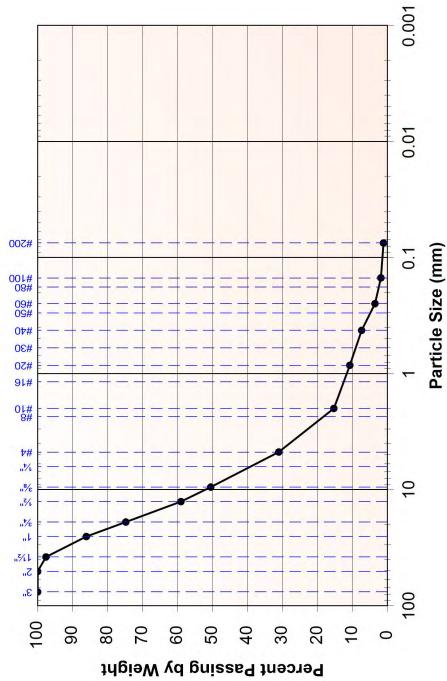
NFS

Frost Classification:



**Particle Size Distribution** 

ASTM D422	2014-454	5/9/2014	6/5/2014
AS	Lab Number	Received	Reported (


Size	Passing	Specification
3"	100%	
2"	100%	
11⁄2"	100%	
-	100%	
34"	96%	
1/2"	86%	
3%"	77%	
#4	55%	
Fotal Weig	Total Weight of Sample 7108g	108g
#10	38%	
#20	28%	
#40	17%	
#60	2%	
#100	3%	
#200	1.7%	
Total Weig	Total Weight of Fine Fraction 384.69	ion 384.6g



## Location: Test Boring 11 Sample 4 Depth 10'-15'

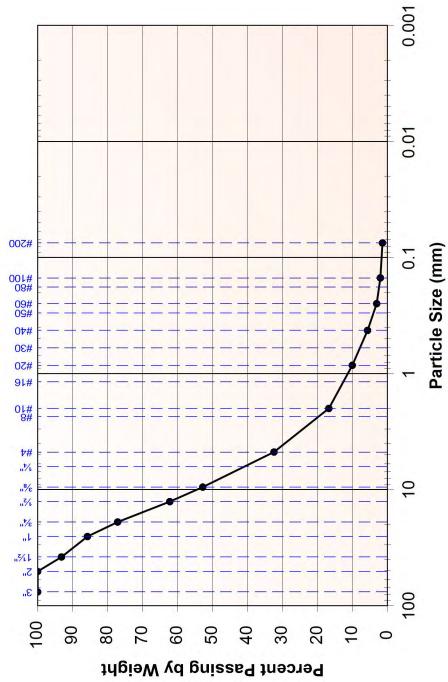
Engineering Classification: Well Graded Gravel with Sand, GW


Frost Classification: NFS



**Particle Size Distribution** 

ASTM D422	<b>umber</b> 2014-455	<b>/ed</b> 5/9/2014	t <b>ed</b> 6/5/2014
	Lab Number	Received	Reported


Size	Passing	Specification
3"	100%	
2"	100%	
11⁄2"	98%	
-	86%	
34"	75%	
1⁄2"	59%	
3%"	51%	
#4	31%	
Fotal Weig	Total Weight of Sample 6210g	210g
#10	15%	
#20	11%	
#40	7%	
#60	4%	
#100	2%	
#200	1.1%	
Total Weiç	Total Weight of Fine Fraction 300.1g	tion 300.1g



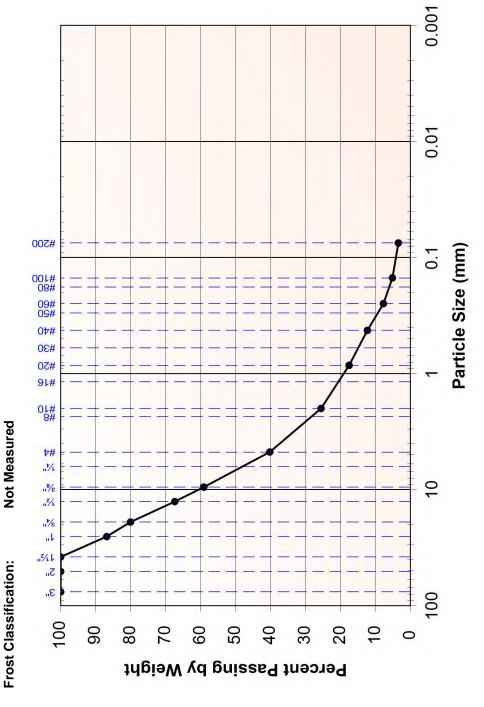
> Location: Test Boring 12 Sample 2 Depth 5'-10'

Engineering Classification: Well Graded Gravel with Sand, GW

Frost Classification: NFS



**Particle Size Distribution** 


ASTM D422	Lab Number 2014-456	<b>:eived</b> 5/9/2014	<b>oorted</b> 6/5/2014
	Lab Nu	Received	Reported

Size	Paccind	Snerification
	3000F	
5	0000	
2"	100%	
11⁄2"	93%	
-	86%	
3⁄4"	77%	
1⁄2"	62%	
3%"	53%	
#4	32%	
Total Weiç	Total Weight of Sample 5577g	577g
#10	17%	
#20	10%	
#40	6%	
09#	3%	
#100	2%	
#200	1.4%	
rotal Weiç	Total Weight of Fine Fraction 426.19	tion 426.1g



> Location: Test Boring 13 Sample 1 Depth 2'-5'

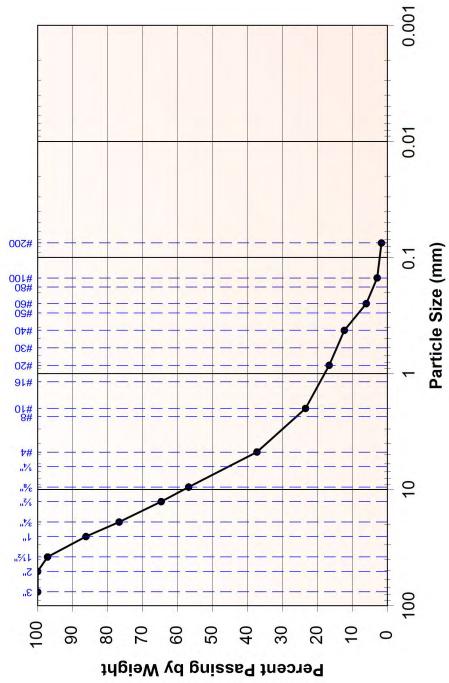
Engineering Classification: Well Graded Gravel with Sand, GW



**Particle Size Distribution** 

ASTM D422	Lab Number 2014-457	Received 5/9/2014	Reported 6/5/2014
	Lab I	Rece	Repo

ation																
Specification																01.49
S									:224g							tion 3
Passing	100%	100%	100%	87%	80%	67%	59%	40%	Total Weight of Sample 6224g	26%	18%	12%	8%	5%	3.5%	Total Weight of Fine Fraction 301.49
Pas	9	10	10	œ	œ	9	S	4	t of Sa	2	-	-			ю.	t of Fir
									Weigh							Weighi
Size	19	2"	1½"	÷-	3⁄4"	1⁄2"	3%"	#4	Total V	#10	#20	#40	09#	#100	#200	Total




> Location: Test Boring 13 Sample 3 Depth 10'-15'

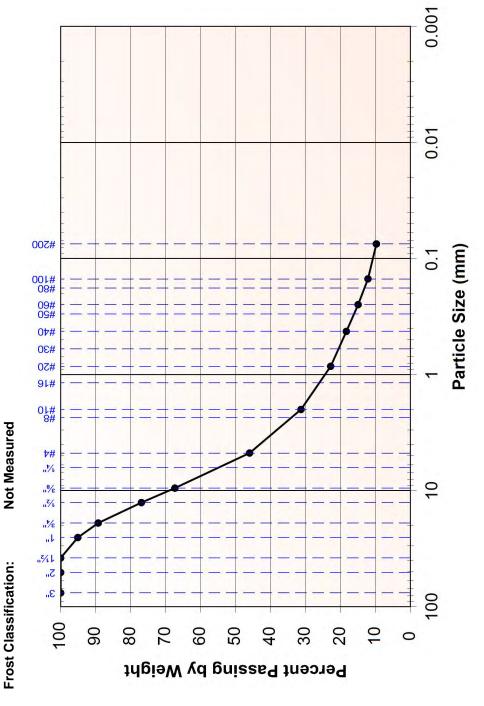
# Engineering Classification: Well Graded Gravel with Sand, GW

NFS

Frost Classification:



**Particle Size Distribution** 


ASTM D422	Lab Number 2014-458	Received 5/9/2014	<b>Reported</b> 6/5/2014
	Lab N	Rece	Repo

Size	Passing	Specification
a"	100%	
2"	100%	
11⁄2"	67%	
-	86%	
3⁄4"	77%	
1⁄2"	65%	
3%"	57%	
#4	37%	
Fotal Weig	Total Weight of Sample 5755.3g	755.3g
#10	23%	
#20	17%	
#40	12%	
<b>09</b> #	6%	
#100	3%	
#200	1.7%	
Fotal Weig	Total Weight of Fine Fraction 325.59	tion 325.5g



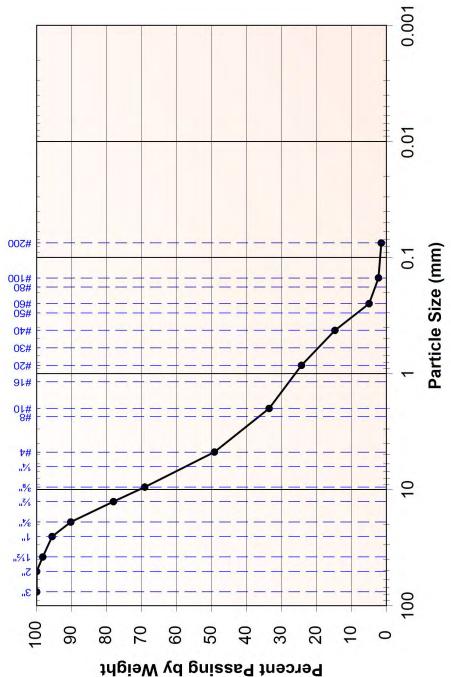
> Location: Test Boring 14 Sample 4 Depth 10'-12.5'

Engineering Classification: Poorly Graded Gravel with Silt and Sand, GP-GM



**Particle Size Distribution** 

Lab Number Received Reported
------------------------------------


	Passing	Specification
œ.	100%	
2"	100%	
11⁄2"	100%	
	95%	
3⁄4"	89%	
1⁄2"	77%	
3%"	67%	
#4	46%	
Total Weig	Total Weight of Sample 5677g	377g
#10	31%	
#20	23%	
#40	18%	
09#	15%	
#100	12%	
#200	9.8%	
Total Weiç	Total Weight of Fine Fraction 421.7g	ion 421.7g



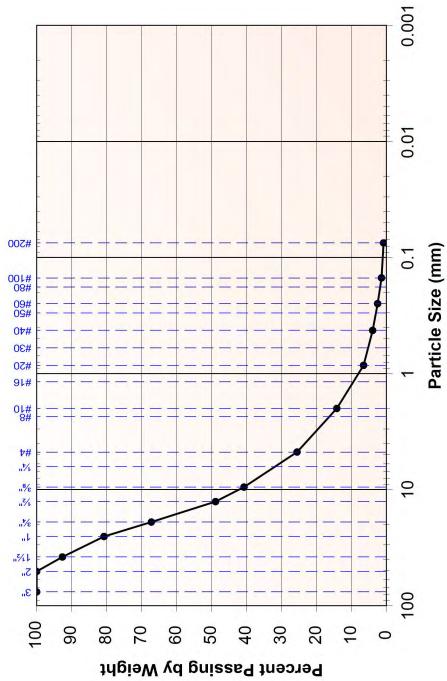
> Location: Test Boring 15 Sample 2 Depth 5'-10'

Engineering Classification: Poorly Graded Gravel with Sand, GP

Frost Classification: NFS



**Particle Size Distribution** 

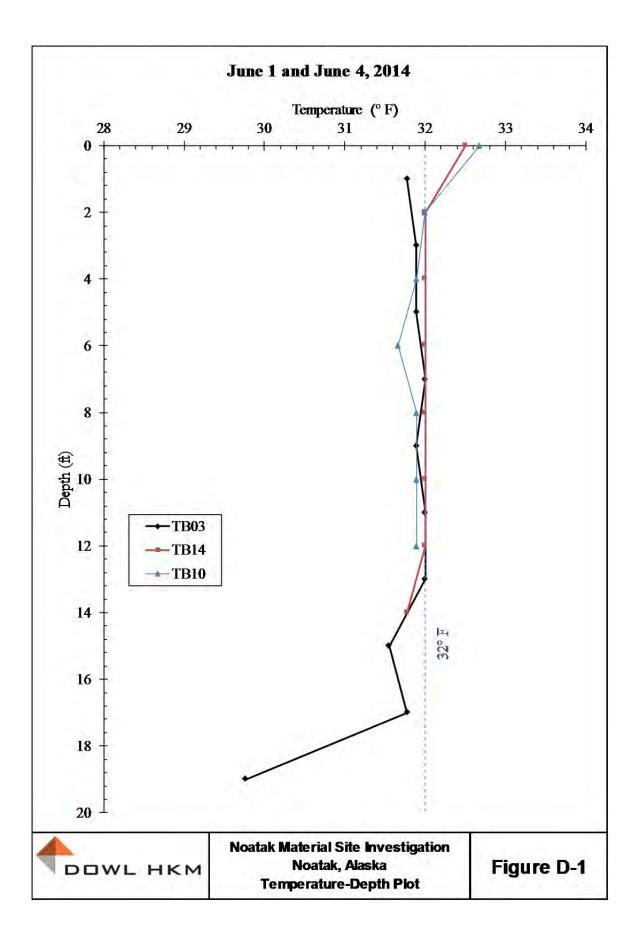

100% 100% 98% 96% 96% 69% 69% 49% 24% 15% 5% 5% 1.5% 1.5% Fine Fraction 315.0g	<ul> <li>5 100%</li> <li>2" 100%</li> <li>2" 100%</li> <li>11/2" 98%</li> <li>11" 96%</li> <li>34%</li> <li>34%</li> <li>#10 34%</li> <li>#40 15%</li> <li>#40 15%</li> <li>#40 15%</li> <li>#20 24%</li> <li>#20 24%</li> <li>#20 24%</li> <li>Total Weight of Fraction 315.0g</li> </ul>
100% 98% 96% 90% 69% 69% 49% 24% 15% 5% 5% 1.5% 1.5% Fine Fraction 315.0g	100% 98% 96% 69% 69% 49% 34% 15% 5% 5% 1.5% Fine Fraction 315.0g
98% 96% 90% 78% 69% 49% 34% 15% 5% 1.5% 1.5% Fine Fraction 315.0g	98% 96% 78% 69% 49% 34% 34% 15% 5% 1.5% Tine Fraction 315.0g
96%	96%
90%	90%
78%	78%
69%	69%
49%	49%
34%	34%
24%	34%
15%	15%
15%	15%
1.5%	1.5%
Fine Fraction 315.0g	Fine Fraction 315.0g
90% 78% 69% 49% 34% 34% 24% 15% 15% 1.5% Fine Fraction 315.0g	90% 78% 69% 49% 34% 24% 15% 1.5% 1.5% Fine Fraction 315.0g
78%	78%
69%	69%
49%	49%
Sample 7306g	Sample 7306g
34%	34%
15%	24%
5%	15%
2%	5%
1.5%	1.5%
Fine Fraction 315.0g	Fine Fraction 315.0g
69%	69%
49%	49%
Sample 7306g	Sample 7306g
34%	34%
24%	24%
15%	5%
5%	5%
1.5%	1.5%
Fine Fraction 315.0g	Fine Fraction 315.0g
49% Sample 7306g 34% 24% 5% 2% 1.5% Fine Fraction 315.0g	49% Sample 7306g 34% 24% 15% 1.5% Fine Fraction 315.0g
Sample 7306g 34% 24% 15% 5% 2% 1.5% Fine Fraction 315.0g	Sample 7306g 34% 24% 15% 2% 1.5% Fine Fraction 315.0g
34%	34%
24%	24%
15%	15%
2%	5%
1.5%	1.5%
Fine Fraction 315.0g	Fine Fraction 315.0g
24%	24%
15%	15%
5%	5%
1.5%	1.5%
Fine Fraction 315.0g	Fine Fraction 315.0g
15%	15%
5%	5%
2%	2%
1.5%	1.5%
Fine Fraction 315.0g	Fine Fraction 315.0g
5%	5%
2%	2%
1.5%	1.5%
Fine Fraction 315.0g	Fine Fraction 315.0g
2%	2%
1.5%	1.5%
Fine Fraction 315.0g	Fine Fraction 315.0g
1.5%	1.5%
Fine Fraction 315.0g	Fine Fraction 315.0g
Fine Fraction 315.0g	Fine Fraction 315.0g



# Location: Test Boring 15 Sample 3 Depth 10'-15'

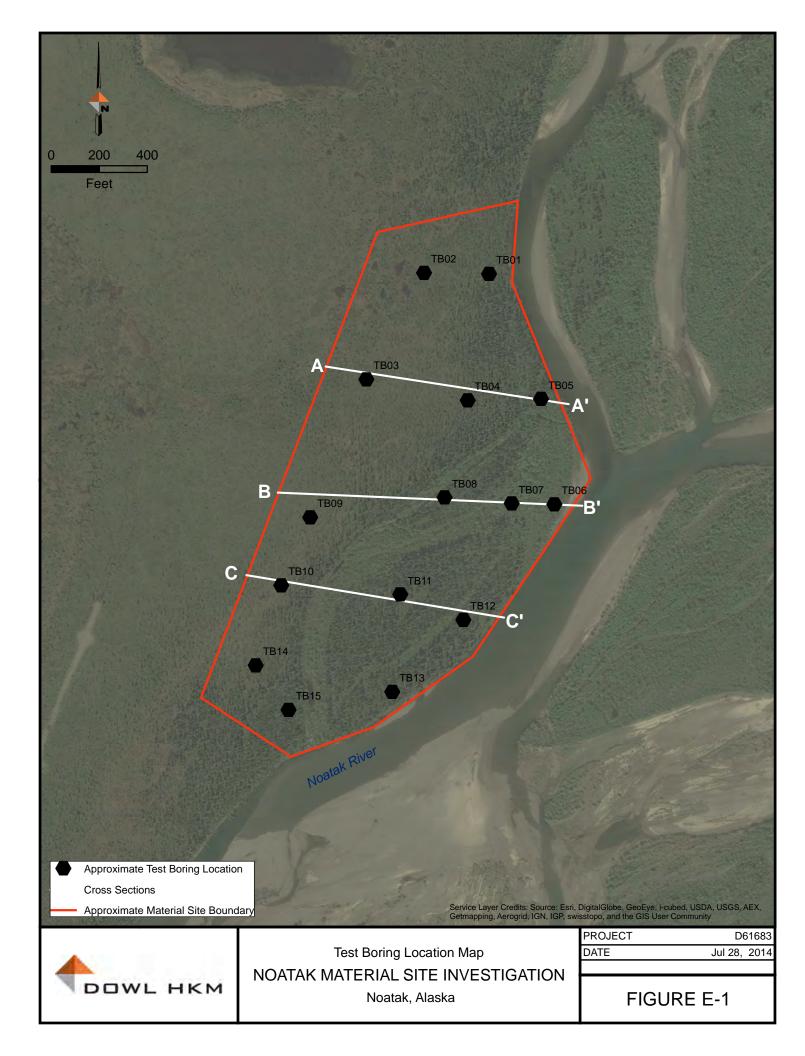
Engineering Classification: Well Graded Gravel with Sand, GW

Frost Classification: NFS



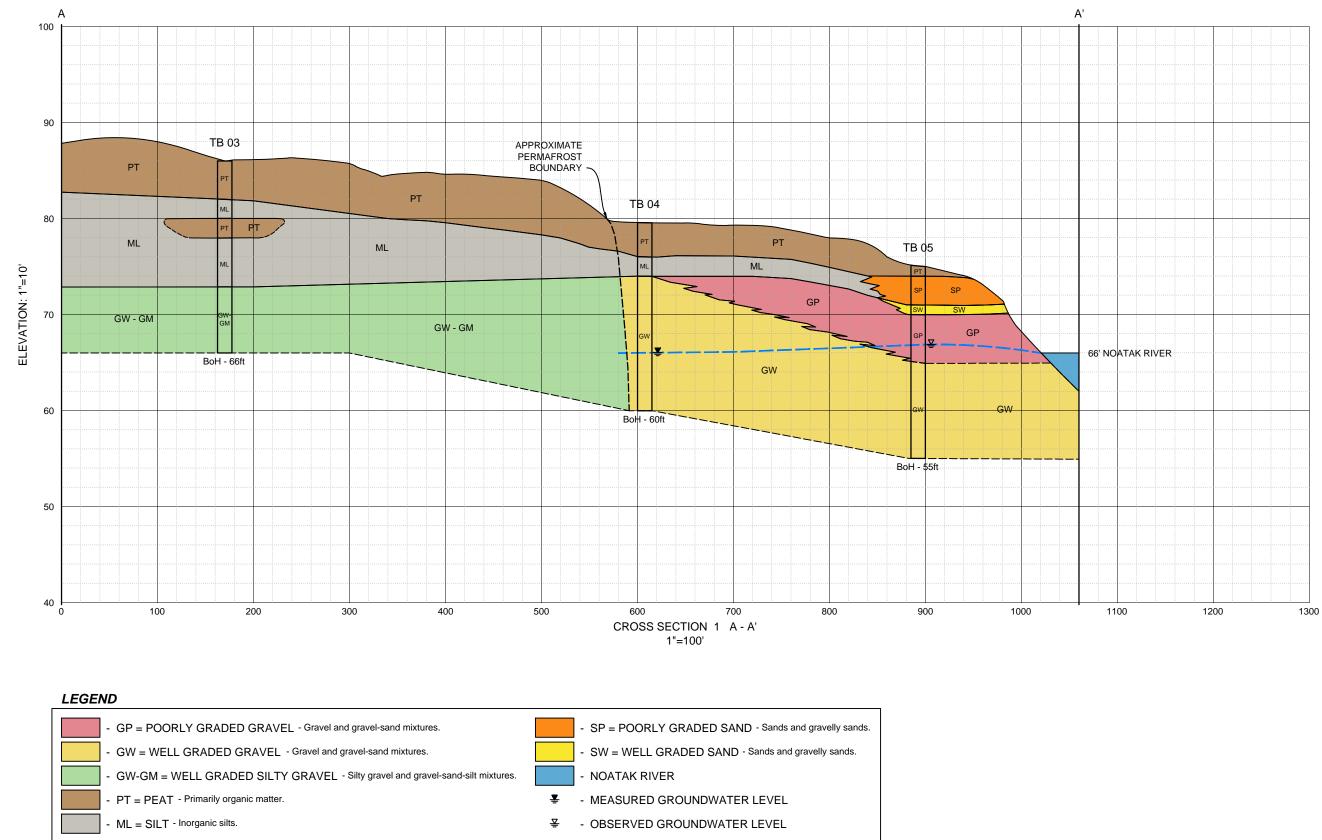

**Particle Size Distribution** 

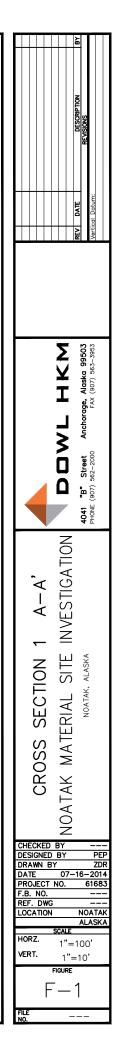
	100% 100% 81% 67% 49%
	00% 33% 57% 49%
0 0 0 4 4	33% 31% 49% 41%
0044	31% 57% 49% 41%
0 7 7	37% 49% 41%
4 4	49% 41%
Ф	41%
N	26%
Total Weight of Sample 4995g	ample 4995g
-	14%
	7%
	4%
	3%
#100	1%
#200 0.	0.8%
Weight of Fir	Total Weight of Fine Fraction 364.3g


#### **APPENDIX D**

**Thermistor Measurements** 




#### **APPENDIX E**


#### **Generalized Geologic Cross Sections Map**



#### **APPENDIX F**

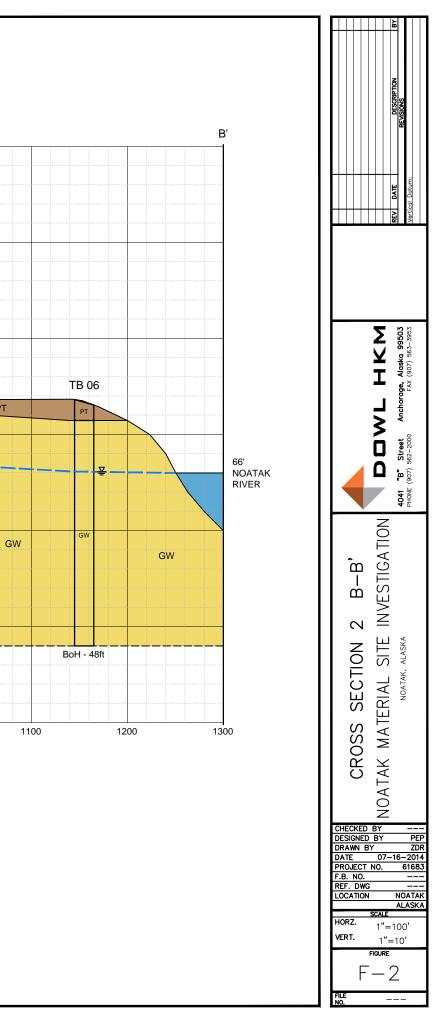
**Generalized Geologic Cross Sections** 





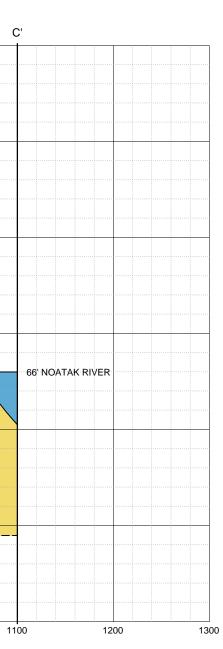
90 TB 09 APPROXIMATE ~ PERMAFROST BOUNDARY PT PT ML PT TB 08 80 ML РТ GP - GM M TB 07 ELEVATION: 1"=10' SM BoH - 75ft GP - GM PT PT 70 GP ĠW 60 GP ̈́Ρ́Τ BoH - 54ft 50 BoH - 48ft 40 100 200 300 400 500 800 900 700 1000 0 600 CROSS SECTION 2 B - B' 1"=100' LEGEND GP = POORLY GRADED GRAVEL - Gravel and gravel-sand mixtures. SM = SILTY SANDS - Silty sands and sand-silt mixtures. GP-GM = POORLY GRADED SILTY GRAVEL - Silty gravel and gravel-sand-silt mixtures. NOATAK RIVER GW = WELL GRADED GRAVEL - Gravel and gravel-sand mixtures. ₹ - MEASURED GROUNDWATER LEVEL

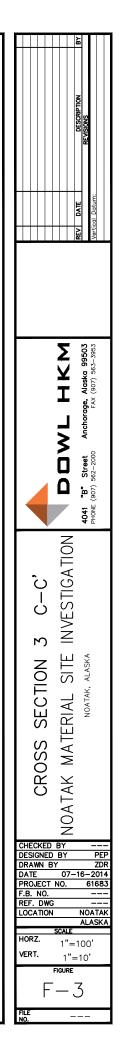
- PT = PEAT - Primarily organic matter.


- ML = SILT - Inorganic silts.

♀ - OBSERVED GROUNDWATER LEVEL

\31\61683\CAD\SA14-GT-BR-2DXS-61683-01.dwg 2014-7-28 08:58:1


В


100



100 90 APPROXIMATE -PERMAFROST BOUNDARY TB 10 80 ML ML TB 11 TB 12 PT - SP? ELEVATION: 1"=10' PT GP-GM GN ABANDONED CHANNEL SP GP-GM 70 BoH - 70ft **₽** GW ĠW GW 60 BoH - 51ft 50 BoH - 49ft 40 100 200 300 400 500 900 700 800 1000 0 600 CROSS SECTION 3 C - C' 1"=100' LEGEND GP-GM = POORLY GRADED SILTY GRAVEL - Silty gravel and gravel-sand-silt mixtures. - NOATAK RIVER 록 - MEASURED GROUNDWATER LEVEL GW = WELL GRADED GRAVEL - Gravel and gravel-sand mixtures. - PT = PEAT - Primarily organic matter. ML = SILT - Inorganic silts. SP = POORLY GRADED SAND - Sands and gravelly sands.

С



